# Struct libreda_db::prelude::SimpleRPolygon

``````pub struct SimpleRPolygon<T> {
half_points: Vec<T, Global>,
normalized: bool,
}``````
Expand description

A `SimpleRPolygon` is a rectilinear polygon. It does not contain holes but can be self-intersecting. The vertices are stored in an implicit format (one coordinate of two neighbour vertices is always the same for rectilinear polygons). This reduces memory usage but has the drawback that edges must alternate between horizontal and vertical. Vertices between two edges of the same orientation will be dropped.

## Fields§

§`half_points: Vec<T, Global>`§`normalized: bool`

## Implementations§

§

### impl<T> SimpleRPolygon<T>

#### pub fn empty() -> SimpleRPolygon<T>

Create empty polygon without any vertices.

#### pub fn num_points(&self) -> usize

Get the number of vertices.

#### pub fn len(&self) -> usize

Get the number of vertices.

#### pub fn is_empty(&self) -> bool

Check if polygon has no vertices.

#### pub fn reverse(&mut self)

Reverse the order of the vertices in-place.

§

### impl<T> SimpleRPolygon<T>

#### pub fn reversed(self) -> SimpleRPolygon<T>

Reverse the order of vertices.

§

### impl<T> SimpleRPolygon<T>where T: Copy,

#### pub fn points(&self) -> impl Iterator<Item = Point<T>>

Iterate over the points.

#### pub fn edges(&self) -> impl Iterator<Item = REdge<T>>

Get all exterior edges of the polygon.

##### Examples
``````use iron_shapes::simple_rpolygon::SimpleRPolygon;
use iron_shapes::redge::REdge;
let coords = vec![(0, 0), (1, 0), (1, 1), (0, 1)];

let poly = SimpleRPolygon::try_new(&coords).unwrap();
let edges: Vec<_> = poly.edges().collect();
assert_eq!(edges, vec![
REdge::new((0, 0), (1, 0)),
REdge::new((1, 0), (1, 1)),
REdge::new((1, 1), (0, 1)),
REdge::new((0, 1), (0, 0)),
]);
``````
§

### impl<T> SimpleRPolygon<T>where T: Copy + PartialEq<T>,

#### pub fn try_new<P>(points: &Vec<P, Global>) -> Option<SimpleRPolygon<T>>where P: Copy + Into<Point<T>>,

Create new rectilinear polygon from points. Returns `None` if the polygon defined by the points is not rectilinear.

``````use iron_shapes::simple_rpolygon::SimpleRPolygon;

let poly1 = SimpleRPolygon::try_new(&vec![(0, 0), (1, 0), (1, 1), (0, 1)]);
assert!(poly1.is_some());

// A triangle cannot be rectilinear.
let poly1 = SimpleRPolygon::try_new(&vec![(0, 0), (1, 0), (1, 1)]);
assert!(poly1.is_none());
``````
§

### impl<T> SimpleRPolygon<T>where T: CoordinateType,

#### pub fn transformed(&self, tf: &SimpleTransform<T>) -> SimpleRPolygon<T>

Apply the transformation to this rectilinear polygon.

#### pub fn to_simple_polygon(&self) -> SimplePolygon<T>

Convert to a `SimplePolygon`.

#### pub fn convex_hull(&self) -> SimplePolygon<T>where T: Ord,

Get the convex hull of the polygon.

Implements Andrew’s Monotone Chain algorithm. See: http://geomalgorithms.com/a10-_hull-1.html

#### pub fn lower_left_vertex(&self) -> Point<T>

Get the vertex with lowest x-coordinate. Prefer lower y-coordinates to break ties.

##### Examples
``````use iron_shapes::simple_rpolygon::SimpleRPolygon;
use iron_shapes::point::Point;
let coords = vec![(0, 0), (1, 0), (1, 1), (0, 1)];

let poly = SimpleRPolygon::try_new(&coords).unwrap();

assert_eq!(poly.lower_left_vertex(), Point::new(0, 0));
``````

#### pub fn orientation(&self) -> Orientation

Get the orientation of the polygon, i.e. check if it is wound clock-wise or counter-clock-wise.

##### Examples
``````use iron_shapes::simple_rpolygon::SimpleRPolygon;
use iron_shapes::point::Point;
use iron_shapes::types::Orientation;
let coords = vec![(0, 0), (1, 0), (1, 1), (0, 1)];

let poly = SimpleRPolygon::try_new(&coords).unwrap();

assert_eq!(poly.orientation(), Orientation::CounterClockWise);
``````
§

### impl<T> SimpleRPolygon<T>where T: Copy + PartialOrd<T>,

#### pub fn is_rect(&self) -> bool

Check if the polygon is an axis-aligned rectangle.

§

### impl<T> SimpleRPolygon<T>where T: PartialOrd<T>,

#### pub fn normalize(&mut self)

Rotate the vertices to get the lexicographically smallest polygon. Does not change the orientation.

#### pub fn normalized(self) -> SimpleRPolygon<T>

Rotate the vertices to get the lexicographically smallest polygon. Does not change the orientation.

§

### impl<T> SimpleRPolygon<T>where T: PartialEq<T>,

#### pub fn normalized_eq(&self, other: &SimpleRPolygon<T>) -> bool

Equality test for simple polygons.

Two polygons are equal iff a cyclic shift on their vertices can be applied such that the both lists of vertices match exactly.

## Trait Implementations§

§

### impl<T> Clone for SimpleRPolygon<T>where T: Clone,

§

#### fn clone(&self) -> SimpleRPolygon<T>

Returns a copy of the value. Read more
1.0.0 · source§

#### fn clone_from(&mut self, source: &Self)

Performs copy-assignment from `source`. Read more
§

### impl<T> Debug for SimpleRPolygon<T>where T: Debug,

§

#### fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

### impl<'de, T> Deserialize<'de> for SimpleRPolygon<T>where T: Deserialize<'de>,

§

#### fn deserialize<__D>( __deserializer: __D ) -> Result<SimpleRPolygon<T>, <__D as Deserializer<'de>>::Error>where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
§

### impl<T> DoubledOrientedArea<T> for SimpleRPolygon<T>where T: CoordinateType,

§

#### fn area_doubled_oriented(&self) -> T

Calculates the doubled oriented area.

Using doubled area allows to compute in the integers because the area of a polygon with integer coordinates is either integer or half-integer.

The area will be positive if the vertices are listed counter-clockwise, negative otherwise.

Complexity: O(n)

##### Examples
``````use iron_shapes::traits::DoubledOrientedArea;
use iron_shapes::simple_rpolygon::SimpleRPolygon;
let coords = vec![(0, 0), (1, 0), (1, 1), (0, 1)];

let poly = SimpleRPolygon::try_new(&coords).unwrap();

assert_eq!(poly.area_doubled_oriented(), 2);
``````
§

### impl<T> From<Rect<T>> for SimpleRPolygon<T>where T: CoordinateType,

§

#### fn from(r: Rect<T>) -> SimpleRPolygon<T>

Converts to this type from the input type.
§

### impl<T> From<SimpleRPolygon<T>> for Geometry<T>

§

#### fn from(x: SimpleRPolygon<T>) -> Geometry<T>

Converts to this type from the input type.
§

### impl<T> Hash for SimpleRPolygon<T>where T: Hash,

§

#### fn hash<__H>(&self, state: &mut __H)where __H: Hasher,

Feeds this value into the given `Hasher`. Read more
1.3.0 · source§

#### fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given `Hasher`. Read more
§

### impl<T> PartialEq<SimpleRPolygon<T>> for SimpleRPolygon<T>where T: PartialEq<T>,

§

#### fn eq(&self, other: &SimpleRPolygon<T>) -> bool

This method tests for `self` and `other` values to be equal, and is used by `==`.
1.0.0 · source§

#### fn ne(&self, other: &Rhs) -> bool

This method tests for `!=`. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

### impl<T> Serialize for SimpleRPolygon<T>where T: Serialize,

§

#### fn serialize<__S>( &self, __serializer: __S ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

### impl<T> TryBoundingBox<T> for SimpleRPolygon<T>where T: Copy + PartialOrd<T>,

§

#### fn try_bounding_box(&self) -> Option<Rect<T>>

Return the bounding box of this geometry if a bounding box is defined.
§

### impl<T, Dst> TryCastCoord<T, Dst> for SimpleRPolygon<T>where T: CoordinateType + NumCast, Dst: CoordinateType + NumCast,

§

#### type Output = SimpleRPolygon<Dst>

Output type of the cast. This is likely the same geometrical type just with other coordinate types.
§

#### fn try_cast( &self ) -> Option<<SimpleRPolygon<T> as TryCastCoord<T, Dst>>::Output>

Try to cast to target data type. Read more
§

#### fn cast(&self) -> Self::Output

Cast to target data type. Read more
§

### impl<T> WindingNumber<T> for SimpleRPolygon<T>where T: CoordinateType,

§

#### fn winding_number(&self, point: Point<T>) -> isize

Calculate the winding number of the polygon around this point.

TODO: Define how point on edges and vertices is handled.

§

#### fn contains_point_non_oriented(&self, point: Point<T>) -> bool

Check if `point` is inside the polygon, i.e. the polygons winds around the point a non-zero number of times. Read more
§

#### fn contains_point(&self, point: Point<T>) -> bool

Check if `point` is inside the polygon, i.e. the polygon winds around the point an odd number of times. Read more
§

§

§

§

§

§

§

§

## Blanket Implementations§

source§

### impl<T> Any for Twhere T: 'static + ?Sized,

source§

#### fn type_id(&self) -> TypeId

Gets the `TypeId` of `self`. Read more
source§

### impl<T> Borrow<T> for Twhere T: ?Sized,

const: unstable · source§

#### fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

### impl<T> BorrowMut<T> for Twhere T: ?Sized,

const: unstable · source§

#### fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

### impl<T> From<T> for T

const: unstable · source§

#### fn from(t: T) -> T

Returns the argument unchanged.

source§

### impl<T, U> Into<U> for Twhere U: From<T>,

const: unstable · source§

#### fn into(self) -> U

Calls `U::from(self)`.

That is, this conversion is whatever the implementation of `From<T> for U` chooses to do.

source§

### impl<T> ToOwned for Twhere T: Clone,

§

#### type Owned = T

The resulting type after obtaining ownership.
source§

#### fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

#### fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

### impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

#### type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

#### fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

### impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

#### type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

#### fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

source§

source§

§