Struct libreda_db::prelude::SimplePolygon
source · [−]Expand description
A SimplePolygon
is a polygon defined by vertices. It does not contain holes but can be
self-intersecting.
TODO: Implement Deref
for accessing the vertices.
Fields
points: Vec<Point<T>, Global>
Vertices of the polygon.
Implementations
sourceimpl<T> SimplePolygon<T>
impl<T> SimplePolygon<T>
sourcepub fn new(points: Vec<Point<T>, Global>) -> SimplePolygon<T>
pub fn new(points: Vec<Point<T>, Global>) -> SimplePolygon<T>
Create a new polygon from a list of points. The points are taken as they are, without reordering or simplification.
sourcepub fn empty() -> SimplePolygon<T>
pub fn empty() -> SimplePolygon<T>
Create empty polygon without any vertices.
sourceimpl<T> SimplePolygon<T> where
T: Copy,
impl<T> SimplePolygon<T> where
T: Copy,
sourcepub fn from_rect(rect: &Rect<T>) -> SimplePolygon<T>
pub fn from_rect(rect: &Rect<T>) -> SimplePolygon<T>
Create a new simple polygon from a rectangle.
sourceimpl<T> SimplePolygon<T> where
T: Copy,
impl<T> SimplePolygon<T> where
T: Copy,
sourcepub fn edges(&self) -> Vec<Edge<T>, Global>
pub fn edges(&self) -> Vec<Edge<T>, Global>
Get all exterior edges of the polygon.
Examples
use iron_shapes::simple_polygon::SimplePolygon;
use iron_shapes::edge::Edge;
let coords = vec![(0, 0), (1, 0)];
let poly = SimplePolygon::from(coords);
assert_eq!(poly.edges(), vec![Edge::new((0, 0), (1, 0)), Edge::new((1, 0), (0, 0))]);
sourcepub fn edges_iter(&self) -> impl Iterator<Item = Edge<T>>
pub fn edges_iter(&self) -> impl Iterator<Item = Edge<T>>
Iterate over all edges.
sourceimpl<T> SimplePolygon<T> where
T: CoordinateType,
impl<T> SimplePolygon<T> where
T: CoordinateType,
sourcepub fn normalize_orientation<Area>(&mut self) where
Area: Num + PartialOrd<Area> + From<T>,
pub fn normalize_orientation<Area>(&mut self) where
Area: Num + PartialOrd<Area> + From<T>,
Normalize the points of the polygon such that they are arranged counter-clock-wise.
After normalizing, SimplePolygon::area_doubled_oriented()
will return a semi-positive value.
For self-intersecting polygons, the orientation is not clearly defined. For example an 8
shape
has not orientation.
Here, the oriented area is used to define the orientation.
sourcepub fn normalized_orientation<Area>(self) -> SimplePolygon<T> where
Area: Num + PartialOrd<Area> + From<T>,
pub fn normalized_orientation<Area>(self) -> SimplePolygon<T> where
Area: Num + PartialOrd<Area> + From<T>,
Call normalize_orientation()
while taking ownership and returning the result.
sourcepub fn orientation<Area>(&self) -> Orientation where
Area: Num + From<T> + PartialOrd<Area>,
pub fn orientation<Area>(&self) -> Orientation where
Area: Num + From<T> + PartialOrd<Area>,
Get the orientation of the polygon. The orientation is defined by the oriented area. A polygon with a positive area is oriented counter-clock-wise, otherwise it is oriented clock-wise.
Examples
use iron_shapes::simple_polygon::SimplePolygon;
use iron_shapes::point::Point;
use iron_shapes::types::Orientation;
let coords = vec![(0, 0), (3, 0), (3, 1)];
let poly = SimplePolygon::from(coords);
assert_eq!(poly.orientation::<i64>(), Orientation::CounterClockWise);
sourcepub fn convex_hull(&self) -> SimplePolygon<T> where
T: Ord,
pub fn convex_hull(&self) -> SimplePolygon<T> where
T: Ord,
Get the convex hull of the polygon.
Implements Andrew’s Monotone Chain algorithm. See: http://geomalgorithms.com/a10-_hull-1.html
sourcepub fn is_rectilinear(&self) -> bool
pub fn is_rectilinear(&self) -> bool
Test if all edges are parallel to the x or y axis.
sourcepub fn lower_left_vertex(&self) -> Point<T>
pub fn lower_left_vertex(&self) -> Point<T>
Get the vertex with lowest x-coordinate. Prefer lower y-coordinates to break ties.
Examples
use iron_shapes::simple_polygon::SimplePolygon;
use iron_shapes::point::Point;
let coords = vec![(0, 0), (1, 0), (-1, 2), (-1, 1)];
let poly = SimplePolygon::from(coords);
assert_eq!(poly.lower_left_vertex(), Point::new(-1, 1));
Trait Implementations
sourceimpl<T> Clone for SimplePolygon<T> where
T: Clone,
impl<T> Clone for SimplePolygon<T> where
T: Clone,
sourcefn clone(&self) -> SimplePolygon<T>
fn clone(&self) -> SimplePolygon<T>
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl<T> Debug for SimplePolygon<T> where
T: Debug,
impl<T> Debug for SimplePolygon<T> where
T: Debug,
sourceimpl<'de, T> Deserialize<'de> for SimplePolygon<T> where
T: Deserialize<'de>,
impl<'de, T> Deserialize<'de> for SimplePolygon<T> where
T: Deserialize<'de>,
sourcefn deserialize<__D>(
__deserializer: __D
) -> Result<SimplePolygon<T>, <__D as Deserializer<'de>>::Error> where
__D: Deserializer<'de>,
fn deserialize<__D>(
__deserializer: __D
) -> Result<SimplePolygon<T>, <__D as Deserializer<'de>>::Error> where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
sourceimpl<A, T> DoubledOrientedArea<A> for SimplePolygon<T> where
T: CoordinateType,
A: Num + From<T>,
impl<A, T> DoubledOrientedArea<A> for SimplePolygon<T> where
T: CoordinateType,
A: Num + From<T>,
sourcefn area_doubled_oriented(&self) -> A
fn area_doubled_oriented(&self) -> A
Calculates the doubled oriented area.
Using doubled area allows to compute in the integers because the area of a polygon with integer coordinates is either integer or half-integer.
The area will be positive if the vertices are listed counter-clockwise, negative otherwise.
Complexity: O(n)
Examples
use iron_shapes::traits::DoubledOrientedArea;
use iron_shapes::simple_polygon::SimplePolygon;
let coords = vec![(0, 0), (3, 0), (3, 1)];
let poly = SimplePolygon::from(coords);
let area: i64 = poly.area_doubled_oriented();
assert_eq!(area, 3);
sourceimpl<T> From<&SimplePolygon<T>> for Polygon<T> where
T: Copy,
impl<T> From<&SimplePolygon<T>> for Polygon<T> where
T: Copy,
Create a polygon from a simple polygon.
sourcefn from(simple_polygon: &SimplePolygon<T>) -> Polygon<T>
fn from(simple_polygon: &SimplePolygon<T>) -> Polygon<T>
Converts to this type from the input type.
sourceimpl<I, T, P> From<I> for SimplePolygon<T> where
T: Copy,
I: IntoIterator<Item = P>,
Point<T>: From<P>,
impl<I, T, P> From<I> for SimplePolygon<T> where
T: Copy,
I: IntoIterator<Item = P>,
Point<T>: From<P>,
Create a polygon from a type that is convertible into an iterator of values convertible to Point
s.
sourcefn from(iter: I) -> SimplePolygon<T>
fn from(iter: I) -> SimplePolygon<T>
Converts to this type from the input type.
sourceimpl<T> From<SimplePolygon<T>> for Geometry<T>
impl<T> From<SimplePolygon<T>> for Geometry<T>
sourcefn from(x: SimplePolygon<T>) -> Geometry<T>
fn from(x: SimplePolygon<T>) -> Geometry<T>
Converts to this type from the input type.
sourceimpl<T> From<SimplePolygon<T>> for Polygon<T>
impl<T> From<SimplePolygon<T>> for Polygon<T>
Create a polygon from a simple polygon.
sourcefn from(simple_polygon: SimplePolygon<T>) -> Polygon<T>
fn from(simple_polygon: SimplePolygon<T>) -> Polygon<T>
Converts to this type from the input type.
sourceimpl<T, P> FromIterator<P> for SimplePolygon<T> where
T: Copy,
P: Into<Point<T>>,
impl<T, P> FromIterator<P> for SimplePolygon<T> where
T: Copy,
P: Into<Point<T>>,
Create a polygon from a iterator of values convertible to Point
s.
sourcefn from_iter<I>(iter: I) -> SimplePolygon<T> where
I: IntoIterator<Item = P>,
fn from_iter<I>(iter: I) -> SimplePolygon<T> where
I: IntoIterator<Item = P>,
Creates a value from an iterator. Read more
sourceimpl<T> Hash for SimplePolygon<T> where
T: Hash,
impl<T> Hash for SimplePolygon<T> where
T: Hash,
sourceimpl<T> MapPointwise<T> for SimplePolygon<T> where
T: CoordinateType,
impl<T> MapPointwise<T> for SimplePolygon<T> where
T: CoordinateType,
sourceimpl<T> PartialEq<SimplePolygon<T>> for SimplePolygon<T> where
T: PartialEq<T>,
impl<T> PartialEq<SimplePolygon<T>> for SimplePolygon<T> where
T: PartialEq<T>,
sourcefn eq(&self, rhs: &SimplePolygon<T>) -> bool
fn eq(&self, rhs: &SimplePolygon<T>) -> bool
Equality test for simple polygons.
Two polygons are equal iff a cyclic shift on their vertices can be applied such that the both lists of vertices match exactly.
Complexity: O(n^2)
TODO: Normalized ordering of vertices for faster comparison.
sourceimpl<T> Serialize for SimplePolygon<T> where
T: Serialize,
impl<T> Serialize for SimplePolygon<T> where
T: Serialize,
sourcefn serialize<__S>(
&self,
__serializer: __S
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error> where
__S: Serializer,
fn serialize<__S>(
&self,
__serializer: __S
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error> where
__S: Serializer,
Serialize this value into the given Serde serializer. Read more
sourceimpl<T> TryBoundingBox<T> for SimplePolygon<T> where
T: Copy + PartialOrd<T>,
impl<T> TryBoundingBox<T> for SimplePolygon<T> where
T: Copy + PartialOrd<T>,
sourcefn try_bounding_box(&self) -> Option<Rect<T>>
fn try_bounding_box(&self) -> Option<Rect<T>>
Return the bounding box of this geometry if a bounding box is defined.
sourceimpl<T, Dst> TryCastCoord<T, Dst> for SimplePolygon<T> where
T: CoordinateType + NumCast,
Dst: CoordinateType + NumCast,
impl<T, Dst> TryCastCoord<T, Dst> for SimplePolygon<T> where
T: CoordinateType + NumCast,
Dst: CoordinateType + NumCast,
type Output = SimplePolygon<Dst>
type Output = SimplePolygon<Dst>
Output type of the cast. This is likely the same geometrical type just with other coordinate types. Read more
sourcefn try_cast(&self) -> Option<<SimplePolygon<T> as TryCastCoord<T, Dst>>::Output>
fn try_cast(&self) -> Option<<SimplePolygon<T> as TryCastCoord<T, Dst>>::Output>
Try to cast to target data type. Read more
sourceimpl<T> WindingNumber<T> for SimplePolygon<T> where
T: CoordinateType,
impl<T> WindingNumber<T> for SimplePolygon<T> where
T: CoordinateType,
sourcefn winding_number(&self, point: Point<T>) -> isize
fn winding_number(&self, point: Point<T>) -> isize
Calculate the winding number of the polygon around this point.
TODO: Define how point on edges and vertices is handled.
sourcefn contains_point_non_oriented(&self, point: Point<T>) -> bool
fn contains_point_non_oriented(&self, point: Point<T>) -> bool
Check if point
is inside the polygon, i.e. the polygons winds around the point
a non-zero number of times. Read more
sourcefn contains_point(&self, point: Point<T>) -> bool
fn contains_point(&self, point: Point<T>) -> bool
Check if point
is inside the polygon, i.e. the polygon winds around the point
an odd number of times. Read more
impl<T> Eq for SimplePolygon<T> where
T: PartialEq<T>,
Auto Trait Implementations
impl<T> RefUnwindSafe for SimplePolygon<T> where
T: RefUnwindSafe,
impl<T> Send for SimplePolygon<T> where
T: Send,
impl<T> Sync for SimplePolygon<T> where
T: Sync,
impl<T> Unpin for SimplePolygon<T> where
T: Unpin,
impl<T> UnwindSafe for SimplePolygon<T> where
T: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<S, T> RotateOrtho<T> for S where
T: Copy + Zero + Sub<T, Output = T>,
S: MapPointwise<T>,
impl<S, T> RotateOrtho<T> for S where
T: Copy + Zero + Sub<T, Output = T>,
S: MapPointwise<T>,
sourcefn rotate_ortho(&self, a: Angle) -> S
fn rotate_ortho(&self, a: Angle) -> S
Rotate the geometrical shape by a multiple of 90 degrees.