Struct libreda_db::prelude::Polygon
pub struct Polygon<T> {
pub exterior: SimplePolygon<T>,
pub interiors: Vec<SimplePolygon<T>, Global>,
}
Expand description
A polygon possibly with holes. The polygon is defined by a hull and a list of holes
which are both SimplePolygon
s.
Fields§
§exterior: SimplePolygon<T>
The outer hull of the polygon.
interiors: Vec<SimplePolygon<T>, Global>
A list of holes in the polygon.
Implementations§
§impl<T> Polygon<T>
impl<T> Polygon<T>
pub fn new_raw(exterior: Vec<Point<T>, Global>) -> Polygon<T>
pub fn new_raw(exterior: Vec<Point<T>, Global>) -> Polygon<T>
Create a new polygon from a sequence of points. Ordering of points is not normalized. This impacts the equality check.
pub fn new_raw_with_holes<E, I>(
exterior: E,
holes: Vec<I, Global>
) -> Polygon<T>where
E: Into<SimplePolygon<T>>,
I: Into<SimplePolygon<T>>,
pub fn new_raw_with_holes<E, I>( exterior: E, holes: Vec<I, Global> ) -> Polygon<T>where E: Into<SimplePolygon<T>>, I: Into<SimplePolygon<T>>,
Create a new polygon from a hull and a list of holes. Ordering of points is not normalized. This impacts the equality check.
§impl<T> Polygon<T>where
T: PartialOrd<T>,
impl<T> Polygon<T>where T: PartialOrd<T>,
pub fn new<I>(i: I) -> Polygon<T>where
I: Into<Polygon<T>>,
pub fn new<I>(i: I) -> Polygon<T>where I: Into<Polygon<T>>,
Create a new polygon from a sequence of points.
pub fn new_with_holes<E, I>(exterior: E, holes: Vec<I, Global>) -> Polygon<T>where
E: Into<SimplePolygon<T>>,
I: Into<SimplePolygon<T>>,
pub fn new_with_holes<E, I>(exterior: E, holes: Vec<I, Global>) -> Polygon<T>where E: Into<SimplePolygon<T>>, I: Into<SimplePolygon<T>>,
Create a new polygon from a hull and a list of holes.
pub fn normalize(&mut self)
pub fn normalize(&mut self)
Reorder vertices and holes to get the lexicographically smallest representation of this polygon. Does not change the orientations.
pub fn normalized(self) -> Polygon<T>
pub fn normalized(self) -> Polygon<T>
Reorder vertices and holes to get the lexicographically smallest representation of this polygon. Does not change the orientations.
§impl<T> Polygon<T>where
T: CoordinateType,
impl<T> Polygon<T>where T: CoordinateType,
pub fn convex_hull(&self) -> SimplePolygon<T>where
T: Ord,
pub fn convex_hull(&self) -> SimplePolygon<T>where T: Ord,
Get the convex hull of the polygon.
Implements Andrew’s Monotone Chain algorithm. See: http://geomalgorithms.com/a10-_hull-1.html
pub fn lower_left_vertex(&self) -> Point<T>
pub fn lower_left_vertex(&self) -> Point<T>
Get the vertex with lowest x-coordinate of the exterior polygon. Prefer lower y-coordinates to break ties.
Examples
use iron_shapes::polygon::Polygon;
use iron_shapes::point::Point;
let coords = vec![(0, 0), (1, 0), (-1, 2), (-1, 1)];
let poly = Polygon::new(coords);
assert_eq!(poly.lower_left_vertex(), Point::new(-1, 1));
pub fn orientation<Area>(&self) -> Orientationwhere
Area: Num + From<T> + PartialOrd<Area>,
pub fn orientation<Area>(&self) -> Orientationwhere Area: Num + From<T> + PartialOrd<Area>,
Get the orientation of the exterior polygon.
Examples
use iron_shapes::polygon::Polygon;
use iron_shapes::point::Point;
use iron_shapes::types::Orientation;
let coords = vec![(0, 0), (3, 0), (3, 1)];
let poly = Polygon::new(coords);
assert_eq!(poly.orientation::<i64>(), Orientation::CounterClockWise);
Trait Implementations§
source§impl BooleanOp<Ratio<i32>> for Polygon<Ratio<i32>>
impl BooleanOp<Ratio<i32>> for Polygon<Ratio<i32>>
source§fn boolean_op(
&self,
operation: Operation,
other: &Polygon<Ratio<i32>>,
polygon_semantics: PolygonSemantics
) -> MultiPolygon<Ratio<i32>>
fn boolean_op( &self, operation: Operation, other: &Polygon<Ratio<i32>>, polygon_semantics: PolygonSemantics ) -> MultiPolygon<Ratio<i32>>
source§fn intersection(&self, other: &Self) -> MultiPolygon<T>
fn intersection(&self, other: &Self) -> MultiPolygon<T>
self & other
. Read moresource§fn difference(&self, other: &Self) -> MultiPolygon<T>
fn difference(&self, other: &Self) -> MultiPolygon<T>
self - other
. Read moresource§impl BooleanOp<Ratio<i64>> for Polygon<Ratio<i64>>
impl BooleanOp<Ratio<i64>> for Polygon<Ratio<i64>>
source§fn boolean_op(
&self,
operation: Operation,
other: &Polygon<Ratio<i64>>,
polygon_semantics: PolygonSemantics
) -> MultiPolygon<Ratio<i64>>
fn boolean_op( &self, operation: Operation, other: &Polygon<Ratio<i64>>, polygon_semantics: PolygonSemantics ) -> MultiPolygon<Ratio<i64>>
source§fn intersection(&self, other: &Self) -> MultiPolygon<T>
fn intersection(&self, other: &Self) -> MultiPolygon<T>
self & other
. Read moresource§fn difference(&self, other: &Self) -> MultiPolygon<T>
fn difference(&self, other: &Self) -> MultiPolygon<T>
self - other
. Read moresource§impl BooleanOp<f32> for Polygon<f32>
impl BooleanOp<f32> for Polygon<f32>
source§fn boolean_op(
&self,
operation: Operation,
other: &Polygon<f32>,
polygon_semantics: PolygonSemantics
) -> MultiPolygon<f32>
fn boolean_op( &self, operation: Operation, other: &Polygon<f32>, polygon_semantics: PolygonSemantics ) -> MultiPolygon<f32>
source§fn intersection(&self, other: &Self) -> MultiPolygon<T>
fn intersection(&self, other: &Self) -> MultiPolygon<T>
self & other
. Read moresource§fn difference(&self, other: &Self) -> MultiPolygon<T>
fn difference(&self, other: &Self) -> MultiPolygon<T>
self - other
. Read moresource§impl BooleanOp<f64> for Polygon<f64>
impl BooleanOp<f64> for Polygon<f64>
source§fn boolean_op(
&self,
operation: Operation,
other: &Polygon<f64>,
polygon_semantics: PolygonSemantics
) -> MultiPolygon<f64>
fn boolean_op( &self, operation: Operation, other: &Polygon<f64>, polygon_semantics: PolygonSemantics ) -> MultiPolygon<f64>
source§fn intersection(&self, other: &Self) -> MultiPolygon<T>
fn intersection(&self, other: &Self) -> MultiPolygon<T>
self & other
. Read moresource§fn difference(&self, other: &Self) -> MultiPolygon<T>
fn difference(&self, other: &Self) -> MultiPolygon<T>
self - other
. Read moresource§impl BooleanOp<i32> for Polygon<i32>
impl BooleanOp<i32> for Polygon<i32>
source§fn boolean_op(
&self,
operation: Operation,
other: &Polygon<i32>,
polygon_semantics: PolygonSemantics
) -> MultiPolygon<i32>
fn boolean_op( &self, operation: Operation, other: &Polygon<i32>, polygon_semantics: PolygonSemantics ) -> MultiPolygon<i32>
source§fn intersection(&self, other: &Self) -> MultiPolygon<T>
fn intersection(&self, other: &Self) -> MultiPolygon<T>
self & other
. Read moresource§fn difference(&self, other: &Self) -> MultiPolygon<T>
fn difference(&self, other: &Self) -> MultiPolygon<T>
self - other
. Read moresource§impl BooleanOp<i64> for Polygon<i64>
impl BooleanOp<i64> for Polygon<i64>
source§fn boolean_op(
&self,
operation: Operation,
other: &Polygon<i64>,
polygon_semantics: PolygonSemantics
) -> MultiPolygon<i64>
fn boolean_op( &self, operation: Operation, other: &Polygon<i64>, polygon_semantics: PolygonSemantics ) -> MultiPolygon<i64>
source§fn intersection(&self, other: &Self) -> MultiPolygon<T>
fn intersection(&self, other: &Self) -> MultiPolygon<T>
self & other
. Read moresource§fn difference(&self, other: &Self) -> MultiPolygon<T>
fn difference(&self, other: &Self) -> MultiPolygon<T>
self - other
. Read more§impl<'de, T> Deserialize<'de> for Polygon<T>where
T: Deserialize<'de>,
impl<'de, T> Deserialize<'de> for Polygon<T>where T: Deserialize<'de>,
§fn deserialize<__D>(
__deserializer: __D
) -> Result<Polygon<T>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>( __deserializer: __D ) -> Result<Polygon<T>, <__D as Deserializer<'de>>::Error>where __D: Deserializer<'de>,
§impl<T, A> DoubledOrientedArea<A> for Polygon<T>where
T: CoordinateType,
A: Num + From<T>,
impl<T, A> DoubledOrientedArea<A> for Polygon<T>where T: CoordinateType, A: Num + From<T>,
§fn area_doubled_oriented(&self) -> A
fn area_doubled_oriented(&self) -> A
Calculates the doubled oriented area.
Using doubled area allows to compute in the integers because the area of a polygon with integer coordinates is either integer or half-integer.
The area will be positive if the vertices are listed counter-clockwise, negative otherwise.
Complexity: O(n)
Examples
use iron_shapes::polygon::{Polygon, DoubledOrientedArea};
let coords = vec![(0, 0), (3, 0), (3, 1)];
let poly = Polygon::new(coords);
let area: i64 = poly.area_doubled_oriented();
assert_eq!(area, 3);
§impl<'a, T, P> From<&'a Vec<P, Global>> for Polygon<T>where
T: CoordinateType,
Point<T>: From<&'a P>,
impl<'a, T, P> From<&'a Vec<P, Global>> for Polygon<T>where T: CoordinateType, Point<T>: From<&'a P>,
Create a polygon from a Vec
of values convertible to Point
s.
§impl<T> From<&SimplePolygon<T>> for Polygon<T>where
T: Copy,
impl<T> From<&SimplePolygon<T>> for Polygon<T>where T: Copy,
Create a polygon from a simple polygon.
§fn from(simple_polygon: &SimplePolygon<T>) -> Polygon<T>
fn from(simple_polygon: &SimplePolygon<T>) -> Polygon<T>
§impl<T> From<SimplePolygon<T>> for Polygon<T>
impl<T> From<SimplePolygon<T>> for Polygon<T>
Create a polygon from a simple polygon.
§fn from(simple_polygon: SimplePolygon<T>) -> Polygon<T>
fn from(simple_polygon: SimplePolygon<T>) -> Polygon<T>
§impl<T, P> From<Vec<P, Global>> for Polygon<T>where
T: Copy + PartialOrd<T>,
Point<T>: From<P>,
impl<T, P> From<Vec<P, Global>> for Polygon<T>where T: Copy + PartialOrd<T>, Point<T>: From<P>,
Create a polygon from a Vec
of values convertible to Point
s.
§impl<T, P> FromIterator<P> for Polygon<T>where
T: Copy,
P: Into<Point<T>>,
impl<T, P> FromIterator<P> for Polygon<T>where T: Copy, P: Into<Point<T>>,
Create a polygon from a iterator of values convertible to Point
s.
§fn from_iter<I>(iter: I) -> Polygon<T>where
I: IntoIterator<Item = P>,
fn from_iter<I>(iter: I) -> Polygon<T>where I: IntoIterator<Item = P>,
§impl<T> MapPointwise<T> for Polygon<T>where
T: CoordinateType,
impl<T> MapPointwise<T> for Polygon<T>where T: CoordinateType,
§impl<T> PartialEq<Polygon<T>> for Polygon<T>where
T: PartialEq<T>,
impl<T> PartialEq<Polygon<T>> for Polygon<T>where T: PartialEq<T>,
§impl<T> Serialize for Polygon<T>where
T: Serialize,
impl<T> Serialize for Polygon<T>where T: Serialize,
§fn serialize<__S>(
&self,
__serializer: __S
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
fn serialize<__S>( &self, __serializer: __S ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where __S: Serializer,
§impl<T> TryBoundingBox<T> for Polygon<T>where
T: Copy + PartialOrd<T>,
impl<T> TryBoundingBox<T> for Polygon<T>where T: Copy + PartialOrd<T>,
§fn try_bounding_box(&self) -> Option<Rect<T>>
fn try_bounding_box(&self) -> Option<Rect<T>>
§impl<T, Dst> TryCastCoord<T, Dst> for Polygon<T>where
T: CoordinateType + NumCast,
Dst: CoordinateType + NumCast,
impl<T, Dst> TryCastCoord<T, Dst> for Polygon<T>where T: CoordinateType + NumCast, Dst: CoordinateType + NumCast,
§impl<T> WindingNumber<T> for Polygon<T>where
T: CoordinateType,
impl<T> WindingNumber<T> for Polygon<T>where T: CoordinateType,
§fn winding_number(&self, point: Point<T>) -> isize
fn winding_number(&self, point: Point<T>) -> isize
Calculate the winding number of the polygon around this point.
TODO: Define how point on edges and vertices is handled.
§fn contains_point_non_oriented(&self, point: Point<T>) -> bool
fn contains_point_non_oriented(&self, point: Point<T>) -> bool
point
is inside the polygon, i.e. the polygons winds around the point
a non-zero number of times. Read more§fn contains_point(&self, point: Point<T>) -> bool
fn contains_point(&self, point: Point<T>) -> bool
point
is inside the polygon, i.e. the polygon winds around the point
an odd number of times. Read more