1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
// Copyright (c) 2020-2021 Thomas Kramer.
// SPDX-FileCopyrightText: 2022 Thomas Kramer
//
// SPDX-License-Identifier: AGPL-3.0-or-later
//! Wrapper around a netlist which provides an on-the-fly flat view of a certain cell.
//! The presented view is flattened until leaf cells.
//! Internally this works by using component IDs that are actually paths through the hierarchy.
use crate::traits::HierarchyBase;
use std::collections::{HashMap, HashSet};
/// Wrapper around ID types.
/// This wrapper makes sure that the flat view uses other ID types than the
/// underlying hierarchical view.
#[derive(Clone, Debug, Hash, PartialEq)]
pub struct FlatId<T>(T);
/// Wrapper around a netlist which provides an on-the-fly flat view of a certain cell.
/// The presented view is flattened until leaf cells.
/// Internally this works by using component IDs that are actually paths through the hierarchy.
///
/// Names are constructed by concatenating the names of the path elements
/// with a separator string in between.
///
/// # Example
///
/// ```
/// use libreda_db::prelude::{Chip, HierarchyBase, HierarchyEdit, FlatView};
///
/// // Create a simple hierarchy.
/// let mut chip = Chip::new();
/// let top = chip.create_cell("TOP".into());
/// let intermediate = chip.create_cell("INTERMEDIATE".into());
/// let leaf1 = chip.create_cell("LEAF1".into());
/// let leaf2 = chip.create_cell("LEAF2".into());
///
/// // The intermediate cell contains two instances of leaf1 and one instance of leaf2.
/// chip.create_cell_instance(&intermediate, &leaf1, Some("leaf1_inst1".into()));
/// chip.create_cell_instance(&intermediate, &leaf1, Some("leaf1_inst2".into()));
/// chip.create_cell_instance(&intermediate, &leaf2, Some("leaf2_inst1".into()));
///
/// // Create two instances of the intermediate cell in the TOP cell.
/// chip.create_cell_instance(&top, &intermediate, Some("intermediate1".into()));
/// chip.create_cell_instance(&top, &intermediate, Some("intermediate2".into()));
///
/// // Create the flat view.
///
/// let flat = FlatView::new_with_separator(&chip, ":".to_string());
/// let flat_top = flat.cell_by_name("TOP").expect("TOP not found in flat view.");
/// // There are 2 instances of the intermediate cell which contains 3 leaf cells,
/// // so now the flattened top should contain 2*3 instances.
/// assert_eq!(flat.num_child_instances(&flat_top), 2*3);
///
/// // Get a cell instance with the path string.
/// let inst = flat.cell_instance_by_name(&flat_top, "intermediate1:leaf1_inst1").expect("Instance not found.");
/// // Instance names are assembled from the path.
/// assert_eq!(flat.cell_instance_name(&inst).unwrap().as_str(), "intermediate1:leaf1_inst1");
///
/// // There should be 4 instances of the LEAF1 cell now.
/// assert_eq!(flat.each_cell_reference(&leaf1).count(), 2*2);
/// ```
pub struct FlatView<'a, N> {
/// Sequence used to separate path elements when creating qualified names.
/// Names of the original netlist are not allowed to contain the path separator.
path_separator: String,
/// Underlying netlist data structure.
base: &'a N,
}
impl<'a, N: HierarchyBase> FlatView<'a, N> {
/// Create a new flat view of `base`.
/// Use "/" as a path separator in names.
pub fn new(base: &'a N) -> Self {
Self {
path_separator: "/".to_string(),
base,
}
}
/// Create a new flat view of `base`.
/// Use a custom path separator in concatenated names.
pub fn new_with_separator(base: &'a N, path_separator: String) -> Self {
Self {
path_separator,
base,
}
}
fn cell_is_leaf(&self, cell: &N::CellId) -> bool {
self.base.num_child_instances(&cell) == 0
}
fn cell_exists_in_flat_view(&self, cell: &N::CellId) -> bool {
!self.cell_is_flattened(cell)
}
/// Check if the cell got flattened and does not
/// exist in the flat view.
fn cell_is_flattened(&self, cell: &N::CellId) -> bool {
let is_top = self.base.num_dependent_cells(&cell) == 0;
let is_leaf = self.cell_is_leaf(cell);
!is_top && !is_leaf
}
}
impl<'a, N: HierarchyBase> HierarchyBase for FlatView<'a, N> {
type NameType = N::NameType;
type CellId = N::CellId;
type CellInstId = Vec<N::CellInstId>;
fn cell_by_name(&self, name: &str) -> Option<Self::CellId> {
let cell = self.base.cell_by_name(name);
if let Some(cell) = cell {
if self.cell_exists_in_flat_view(&cell) {
Some(cell)
} else {
None
}
} else {
None
}
}
fn cell_instance_by_name(
&self,
parent_cell: &Self::CellId,
name: &str,
) -> Option<Self::CellInstId> {
let path = name.split(&self.path_separator);
let mut parent_cell = parent_cell.clone();
let mut current_inst = vec![];
// Resolve the path.
// For each path element...
for name in path {
// Find the child in the current parent.
let inst = self.base.cell_instance_by_name(&parent_cell, name);
if let Some(inst) = inst {
// Descend into the child.
parent_cell = self.base.template_cell(&inst);
current_inst.push(inst);
} else {
// No child could be found.
current_inst.clear();
break;
}
}
if current_inst.is_empty() {
None
} else {
Some(current_inst)
}
}
fn cell_name(&self, cell: &Self::CellId) -> Self::NameType {
let name = self.base.cell_name(cell);
if self.cell_is_flattened(cell) {
panic!("Cell does not exist in flat view: {}", &name);
}
name
}
fn cell_instance_name(&self, cell_inst: &Self::CellInstId) -> Option<Self::NameType> {
// Try to find the name of each path element.
let path_names: Option<Vec<_>> = cell_inst
.iter()
.map(|inst| self.base.cell_instance_name(inst))
.collect();
// If a name could be found for each element
// join them with the path separator.
path_names.map(|names| names.join(&self.path_separator).into())
}
fn parent_cell(&self, cell_instance: &Self::CellInstId) -> Self::CellId {
self.base.parent_cell(&cell_instance[0])
}
fn template_cell(&self, cell_instance: &Self::CellInstId) -> Self::CellId {
self.base
.template_cell(&cell_instance[cell_instance.len() - 1])
}
fn for_each_cell<F>(&self, mut f: F)
where
F: FnMut(Self::CellId) -> (),
{
self.base.for_each_cell(|c| {
// Iterate over top-level and leaf cells only.
if self.cell_exists_in_flat_view(&c) {
f(c);
}
})
}
fn for_each_cell_instance<F>(&self, cell: &Self::CellId, mut f: F)
where
F: FnMut(Self::CellInstId) -> (),
{
// Depth-first traversal of the dependency graph.
// Start with the top-level instances.
let mut stack = vec![self.base.each_cell_instance(cell)];
// Path through the hierarchy to the current cell.
let mut path = vec![];
// Work through all the levels until none is left.
while let Some(mut insts) = stack.pop() {
// Take the next instance from the current level...
if let Some(inst) = insts.next() {
// ... and directly push the current level again on the stack.
stack.push(insts);
let template = self.base.template_cell(&inst);
path.push(inst);
if self.base.num_child_instances(&template) == 0 {
// Leaf cell.
f(path.clone())
} else {
// Push new level.
let sub_insts = self.base.each_cell_instance(&template);
stack.push(sub_insts);
}
} else {
// insts is empty. We go a level up.
path.pop();
}
}
}
fn for_each_cell_dependency<F>(&self, cell: &Self::CellId, mut f: F)
where
F: FnMut(Self::CellId) -> (),
{
let mut visited = HashSet::new();
let mut stack = self.base.each_cell_dependency_vec(cell);
while let Some(dep) = stack.pop() {
if !visited.contains(&dep) {
// Find child dependencies.
stack.extend(self.base.each_cell_dependency(&dep));
// Visit the dependency.
if self.cell_exists_in_flat_view(&dep) {
f(dep.clone());
}
// Remember we visited this dependency already.
visited.insert(dep);
}
}
}
fn for_each_dependent_cell<F>(&self, cell: &Self::CellId, mut f: F)
where
F: FnMut(Self::CellId) -> (),
{
// Only top-level cells can be dependent cells in the flat view.
let mut visited = HashSet::new();
let mut stack = self.base.each_dependent_cell_vec(cell);
while let Some(dep) = stack.pop() {
if !visited.contains(&dep) {
visited.insert(dep.clone());
if self.cell_exists_in_flat_view(&dep) {
f(dep);
} else {
// Follow towards the root.
stack.extend(self.base.each_dependent_cell(&dep));
}
}
}
}
fn for_each_cell_reference<F>(&self, cell: &Self::CellId, mut f: F)
where
F: FnMut(Self::CellInstId) -> (),
{
assert!(
self.cell_exists_in_flat_view(&cell),
"Cell does not exist in flat view: {}",
self.base.cell_name(cell)
);
let mut references = vec![self.base.each_cell_reference(&cell)];
let mut path_rev = vec![];
while let Some(mut refs) = references.pop() {
if let Some(r) = refs.next() {
references.push(refs);
let parent = self.base.parent_cell(&r);
path_rev.push(r.clone());
if self.cell_exists_in_flat_view(&parent) {
// Reached the top.
let mut path = path_rev.clone();
path.reverse();
f(path);
} else {
// Get parent references.
references.push(self.base.each_cell_reference(&parent));
}
} else {
// Worked through all references on this level.
path_rev.pop();
}
}
}
fn num_child_instances(&self, cell: &Self::CellId) -> usize {
let num_non_flat_children = self.base.num_child_instances(cell);
if num_non_flat_children == 0 {
0
} else {
// Count how many times each cell is instantiated.
let mut counted_cells: HashMap<N::CellId, usize> = Default::default();
self.base.for_each_cell_instance(cell, |inst| {
let template = self.base.template_cell(&inst);
*counted_cells.entry(template).or_insert(0) += 1;
});
// Compute recursively the number of children.
counted_cells
.into_iter()
.map(|(cell, num)| num * self.base.num_child_instances(&cell))
.sum()
}
}
fn num_cells(&self) -> usize {
let mut count = 0;
self.for_each_cell(|_| count += 1);
count
}
}
// On-the-fly flattening of nets is not solved yet.
// The main difficulty is: Many nets might now be fused together into one net. How can this be uniquely and efficiently represented?
// impl<'a, N: NetlistBase> NetlistBase for FlatView<'a, N> {
// type PinId = N::PinId;
// type PinInstId = (Self::CellInstId, N::PinInstId);
// // Pin instances need to be extended with the path through the hierarhcy.
// type NetId = (Self::CellInstId, N::NetId);
//
// fn template_pin(&self, (_, pin_instance): &Self::PinInstId) -> Self::PinId {
// self.base.template_pin(pin_instance)
// }
//
// fn pin_direction(&self, pin: &Self::PinId) -> Direction {
// self.base.pin_direction(pin)
// }
//
// fn pin_name(&self, pin: &Self::PinId) -> Self::NameType {
// self.base.pin_name(pin)
// }
//
// fn pin_by_name(&self, parent_circuit: &Self::CellId, name: &str) -> Option<Self::PinId> {
// self.base.pin_by_name(parent_circuit, name)
// }
//
// fn parent_cell_of_pin(&self, pin: &Self::PinId) -> Self::CellId {
// self.base.parent_cell_of_pin(pin)
// }
//
// fn parent_of_pin_instance(&self, (cell_inst, _pin_inst): &Self::PinInstId) -> Self::CellInstId {
// cell_inst.clone()
// }
//
// fn parent_cell_of_net(&self, (path, net): &Self::NetId) -> Self::CellId {
// if let Some(instance) = path.iter().nth(0) {
// // The parent of the flattened net is equal to the parent of the first
// // cell instance in the path.
// self.base.parent_cell(instance)
// } else {
// // The net lives in the top-cell.
// self.base.parent_cell_of_net(net)
// }
// }
//
// fn net_of_pin(&self, pin: &Self::PinId) -> Option<Self::NetId> {
// let net = self.base.net_of_pin(pin);
// net.map(
// |n| (vec![], n)
// )
// }
//
// fn net_of_pin_instance(&self, (path, pin_instance): &Self::PinInstId) -> Option<Self::NetId> {
// let non_flattened_net = self.base.net_of_pin_instance(pin_instance);
// non_flattened_net.map(
// |n| (path.clone(), n)
// )
// }
//
// fn net_zero(&self, parent_circuit: &Self::CellId) -> Self::NetId {
// (vec![], self.base.net_zero(parent_circuit))
// }
//
// fn net_one(&self, parent_circuit: &Self::CellId) -> Self::NetId {
// (vec![], self.base.net_one(parent_circuit))
// }
//
// fn net_by_name(&self, parent_circuit: &Self::CellId, name: &str) -> Option<Self::NetId> {
// // Find last path separator after which comes the net name.
//
// if let Some(last_separator_pos) = name.rfind(self.path_separator.as_str()) {
// let path_string = &name[0..last_separator_pos];
// let net_name = &name[last_separator_pos + 1..name.len()];
//
// // Resolve cell instance.
// if let Some(cell_inst) = self.cell_instance_by_name(parent_circuit, path_string) {
// let template = self.base.template_cell(&cell_inst[cell_inst.len() - 1]);
// let net = self.base.net_by_name(&template, net_name);
// net.map(
// |n| (cell_inst, n)
// )
// } else {
// // Cell instance not found.
// None
// }
// } else {
// // No separator in net name. Look directly in the top cell.
// let net = self.base.net_by_name(parent_circuit, name);
// net.map(
// |n| (vec![], n)
// )
// }
// }
//
// fn net_name(&self, (path, net): &Self::NetId) -> Option<Self::NameType> {
// if let Some(net_name) = self.base.net_name(net) {
// // Try to find the name of each path element.
// let path_names: Option<Vec<_>> = path.iter()
// .map(|inst| self.base.cell_instance_name(inst))
// .collect();
// // If a name could be found for each element
// // join them with the path separator.
// path_names.map(|mut names| {
// names.push(net_name);
// names.join(&self.path_separator).into()
// })
// } else {
// None
// }
// }
//
// fn for_each_pin<F>(&self, circuit: &Self::CellId, f: F) where F: FnMut(Self::PinId) -> () {
// self.base.for_each_pin(circuit, f)
// }
//
// fn for_each_pin_instance<F>(&self, circuit_inst: &Self::CellInstId, mut f: F) where F: FnMut(Self::PinInstId) -> () {
// let hierarchical_inst = &circuit_inst[circuit_inst.len() - 1];
// self.base.for_each_pin_instance(hierarchical_inst, |p| {
// f((circuit_inst.clone(), p))
// })
// }
//
// fn for_each_internal_net<F>(&self, circuit: &Self::CellId, f: F) where F: FnMut(Self::NetId) -> () {
// unimplemented!()
// }
//
// fn num_pins(&self, cell: &Self::CellId) -> usize {
// self.base.num_pins(cell)
// }
//
// fn for_each_pin_of_net<F>(&self, net: &Self::NetId, f: F) where F: FnMut(Self::PinId) -> () {
// unimplemented!()
// }
//
// fn for_each_pin_instance_of_net<F>(&self, net: &Self::NetId, f: F) where F: FnMut(Self::PinInstId) -> () {
// unimplemented!()
// }
//
// fn num_internal_nets(&self, parent: &Self::CellId) -> usize {
// unimplemented!()
// }
// }
//
// #[cfg(test)]
// mod tests_with_hierarchy {
// use crate::prelude::Chip;
// use crate::prelude::*;
// use crate::flat_view::FlatView;
//
// fn create_test_chip() -> Chip {
// let mut chip = Chip::new();
// let top1 = chip.create_cell("TOP1".into());
// let top2 = chip.create_cell("TOP2".into());
// let intermediate = chip.create_cell("INTERMEDIATE".into());
// let leaf1 = chip.create_cell("LEAF1".into());
// let leaf2 = chip.create_cell("LEAF2".into());
//
// chip.create_cell_instance(&intermediate, &leaf1, Some("leaf1_inst1".into()));
// chip.create_cell_instance(&intermediate, &leaf1, Some("leaf1_inst2".into()));
// chip.create_cell_instance(&intermediate, &leaf2, Some("leaf2_inst1".into()));
// chip.create_cell_instance(&intermediate, &leaf2, Some("leaf2_inst2".into()));
//
// chip.create_cell_instance(&top1, &intermediate, Some("intermediate_inst1".into()));
// chip.create_cell_instance(&top1, &intermediate, Some("intermediate_inst2".into()));
//
// // Create instances inanother cell with same names as in TOP1.
// chip.create_cell_instance(&top2, &leaf1, Some("leaf1_inst1".into()));
// chip.create_cell_instance(&top2, &leaf2, Some("leaf2_inst1".into()));
// chip.create_cell_instance(&top2, &leaf2, Some("leaf2_inst2".into()));
// chip
// }
//
// #[test]
// fn test_num_cells() {
// let chip = create_test_chip();
// let flatview = FlatView::new(&chip);
// assert_eq!(flatview.num_cells(), 4); // Two top cells, two leaf cells.
// }
//
// #[test]
// fn test_access_top_cell() {
// let chip = create_test_chip();
//
// let flatview = FlatView::new(&chip);
// let top1 = flatview.cell_by_name("TOP1").expect("Cell not found.");
// assert_eq!(flatview.num_child_instances(&top1), 2 * 4);
// assert_eq!(flatview.num_dependent_cells(&top1), 0);
// assert_eq!(flatview.num_cell_dependencies(&top1), 2);
// assert_eq!(flatview.each_cell_instance(&top1).count(), 8);
// }
//
// #[test]
// fn test_find_template_cell() {
// let chip = create_test_chip();
// let flatview = FlatView::new(&chip);
// let top1 = flatview.cell_by_name("TOP1").expect("Cell not found.");
// let leaf1 = flatview.cell_by_name("LEAF1").expect("Cell not found.");
//
// // Template
// assert_eq!(
// &flatview.template_cell(
// &flatview.cell_instance_by_name(&top1, "intermediate_inst1/leaf1_inst1",
// ).unwrap()),
// &leaf1);
// }
//
// #[test]
// fn test_find_instance_by_name() {
// let chip = create_test_chip();
// let flatview = FlatView::new(&chip);
// let top1 = flatview.cell_by_name("TOP1").expect("Cell not found.");
//
// // Find by name.
// {
// let names = vec![
// "intermediate_inst1/leaf1_inst1",
// "intermediate_inst2/leaf1_inst1",
// "intermediate_inst2/leaf2_inst1",
// "intermediate_inst2/leaf2_inst2",
// ];
// for name in names {
// let inst = flatview.cell_instance_by_name(&top1, name)
// .expect("instance not found");
// assert_eq!(flatview.cell_instance_name(&inst), Some(name.into()));
//
// // Parent
// assert_eq!(&flatview.parent_cell(&inst), &top1);
// }
// }
// }
//
// #[test]
// fn test_count_references() {
// let chip = create_test_chip();
// let flatview = FlatView::new(&chip);
// let top1 = flatview.cell_by_name("TOP1").expect("Cell not found.");
// let leaf1 = flatview.cell_by_name("LEAF1").expect("Cell not found.");
// let leaf2 = flatview.cell_by_name("LEAF2").expect("Cell not found.");
//
// // References.
// assert_eq!(flatview.num_cell_references(&leaf1), 2 * 2 + 1);
// assert_eq!(flatview.num_cell_references(&leaf2), 2 * 2 + 2);
// assert_eq!(flatview.num_cell_references(&top1), 0);
// }
//
//
// #[test]
// fn test_another_top_cell() {
// // TOP2 contains instances with same name as in TOP1.
// let chip = create_test_chip();
// let flatview = FlatView::new(&chip);
// let top2 = flatview.cell_by_name("TOP2").expect("Cell not found.");
//
// assert_eq!(flatview.num_dependent_cells(&top2), 0);
// assert_eq!(flatview.num_cell_dependencies(&top2), 2);
// assert_eq!(flatview.each_cell_instance(&top2).count(), 3);
// }
//
// }
//
//
// #[cfg(test)]
// mod tests_with_netlist {
// use crate::prelude::Chip;
// use crate::prelude::*;
// use crate::flat_view::FlatView;
//
// fn create_test_netlist() -> Chip {
// let mut chip = Chip::new();
// let top = chip.create_cell("TOP".into());
// let sub = chip.create_cell("SUB".into());
// chip.create_net(&sub, Some("A".into()));
//
// let inst_sub1 = chip.create_cell_instance(&top, &sub, Some("sub1".into()));
// let inst_sub2 = chip.create_cell_instance(&top, &sub, Some("sub2".into()));
//
// chip
// }
//
// #[test]
// fn test_net_by_name() {
// let chip = create_test_netlist();
// let flatview = FlatView::new(&chip);
// let top = flatview.cell_by_name("TOP").expect("Cell not found.");
// assert!(flatview.net_by_name(&top, "sub1/A").is_some());
// assert!(flatview.net_by_name(&top, "sub2/A").is_some());
// }
//
//
// }