1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// Copyright (c) 2018-2020 Thomas Kramer.
// SPDX-FileCopyrightText: 2018-2022 Thomas Kramer
//
// SPDX-License-Identifier: AGPL-3.0-or-later

//! This module contains data types and functions for basic polygons without holes.

use crate::CoordinateType;

use crate::point::Point;
use crate::edge::Edge;
use crate::rect::Rect;

pub use crate::traits::{DoubledOrientedArea, TryBoundingBox, MapPointwise, WindingNumber};

use crate::types::*;

use std::iter::FromIterator;
use std::cmp::{Ord, PartialEq};
use std::slice::Iter;
use num_traits::{NumCast, Num};
use crate::traits::TryCastCoord;

/// A `SimplePolygon` is a polygon defined by vertices. It does not contain holes but can be
/// self-intersecting.
///
/// TODO: Implement `Deref` for accessing the vertices.
#[derive(Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct SimplePolygon<T> {
    /// Vertices of the polygon.
    pub points: Vec<Point<T>>
}

/// Shorthand notation for creating a simple polygon.
/// # Example
/// ```
/// # #[macro_use]
/// # extern crate iron_shapes;
/// # fn main() {
/// use iron_shapes::prelude::*;
/// let p = simple_polygon!((0, 0), (1, 0), (1, 1));
/// assert_eq!(p, SimplePolygon::from(vec![(0, 0), (1, 0), (1, 1)]));
/// # }
/// ```
#[macro_export]
macro_rules! simple_polygon {
 ($($x:expr),*) => {SimplePolygon::new((vec![$($x.into()),*]))}
}

impl<T> SimplePolygon<T> {
    /// Create a new polygon from a list of points.
    /// The points are taken as they are, without reordering
    /// or simplification.
    pub fn new(points: Vec<Point<T>>) -> Self {
        Self {
            points
        }
    }

    /// Create empty polygon without any vertices.
    pub fn empty() -> Self {
        SimplePolygon {
            points: Vec::new()
        }
    }

    /// Get the number of vertices.
    pub fn len(&self) -> usize {
        self.points.len()
    }

    /// Shortcut for `self.points.iter()`.
    pub fn iter(&self) -> Iter<Point<T>> {
        self.points.iter()
    }
}

impl<T: Copy> SimplePolygon<T> {
    /// Create a new simple polygon from a rectangle.
    pub fn from_rect(rect: &Rect<T>) -> Self {
        Self::new(
            vec![rect.lower_left(), rect.lower_right(),
                 rect.upper_right(), rect.upper_left()]
        )
    }
}

impl<T> SimplePolygon<T> {
    /// Get index of previous vertex.
    fn prev(&self, i: usize) -> usize {
        match i {
            0 => self.points.len() - 1,
            x => x - 1
        }
    }

    /// Get index of next vertex.
    fn next(&self, i: usize) -> usize {
        match i {
            _ if i == self.points.len() - 1 => 0,
            x => x + 1
        }
    }
}

impl<T: Copy> SimplePolygon<T> {

    /// Get an iterator over the polygon points.
    /// Point 0 is appended to the end to close the cycle.
    fn iter_cycle(&self) -> impl Iterator<Item=&Point<T>> {
        self.points.iter()
            .cycle()
            .take(self.points.len() + 1)
    }

    /// Get all exterior edges of the polygon.
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::simple_polygon::SimplePolygon;
    /// use iron_shapes::edge::Edge;
    /// let coords = vec![(0, 0), (1, 0)];
    ///
    /// let poly = SimplePolygon::from(coords);
    ///
    /// assert_eq!(poly.edges(), vec![Edge::new((0, 0), (1, 0)), Edge::new((1, 0), (0, 0))]);
    ///
    /// ```
    pub fn edges(&self) -> Vec<Edge<T>> {
        self.edges_iter().collect()
    }

    /// Iterate over all edges.
    pub fn edges_iter(&self) -> impl Iterator<Item=Edge<T>> + '_ {
        self.iter()
            .zip(self.iter_cycle().skip(1))
            .map(|(a, b)| Edge::new(a, b))
    }
}

impl<T: CoordinateType> SimplePolygon<T> {

    /// Normalize the points of the polygon such that they are arranged counter-clock-wise.
    ///
    /// After normalizing, `SimplePolygon::area_doubled_oriented()` will return a semi-positive value.
    ///
    /// For self-intersecting polygons, the orientation is not clearly defined. For example an `8` shape
    /// has not orientation.
    /// Here, the oriented area is used to define the orientation.
    pub fn normalize_orientation<Area>(&mut self)
        where Area: Num + PartialOrd + From<T> {
        if self.orientation::<Area>() != Orientation::CounterClockWise {
            self.points.reverse();
        }
    }

    /// Call `normalize_orientation()` while taking ownership and returning the result.
    pub fn normalized_orientation<Area>(mut self) -> Self
        where Area: Num + PartialOrd + From<T> {
        self.normalize_orientation::<Area>();
        self
    }


    /// Get the orientation of the polygon.
    /// The orientation is defined by the oriented area. A polygon with a positive area
    /// is oriented counter-clock-wise, otherwise it is oriented clock-wise.
    ///
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::simple_polygon::SimplePolygon;
    /// use iron_shapes::point::Point;
    /// use iron_shapes::types::Orientation;
    /// let coords = vec![(0, 0), (3, 0), (3, 1)];
    ///
    /// let poly = SimplePolygon::from(coords);
    ///
    /// assert_eq!(poly.orientation::<i64>(), Orientation::CounterClockWise);
    ///
    /// ```
    pub fn orientation<Area>(&self) -> Orientation
        where Area: Num + From<T> + PartialOrd {
        // Find the orientation based the polygon area.
        let area2: Area = self.area_doubled_oriented();

        if area2 > Area::zero() {
            Orientation::CounterClockWise
        } else if area2 < Area::zero() {
            Orientation::ClockWise
        } else {
            debug_assert!(area2 == Area::zero());
            Orientation::Straight
        }
    }

    /// Get the convex hull of the polygon.
    ///
    /// Implements Andrew's Monotone Chain algorithm.
    /// See: <http://geomalgorithms.com/a10-_hull-1.html>
    pub fn convex_hull(&self) -> SimplePolygon<T>
        where T: Ord {
        crate::algorithms::convex_hull::convex_hull(self.points.clone())
    }

    /// Test if all edges are parallel to the x or y axis.
    pub fn is_rectilinear(&self) -> bool {
        self.edges_iter().all(|e| e.is_rectilinear())
    }

    /// Get the vertex with lowest x-coordinate. Prefer lower y-coordinates to break ties.
    ///
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::simple_polygon::SimplePolygon;
    /// use iron_shapes::point::Point;
    /// let coords = vec![(0, 0), (1, 0), (-1, 2), (-1, 1)];
    ///
    /// let poly = SimplePolygon::from(coords);
    ///
    /// assert_eq!(poly.lower_left_vertex(), Point::new(-1, 1));
    ///
    /// ```
    pub fn lower_left_vertex(&self) -> Point<T> {
        debug_assert!(!self.points.is_empty());

        self.lower_left_vertex_with_index().1
    }

    /// Get the vertex with lowest x-coordinate and its index.
    /// Prefer lower y-coordinates to break ties.
    fn lower_left_vertex_with_index(&self) -> (usize, Point<T>) {
        debug_assert!(!self.points.is_empty());

        // Find minimum.
        let min = self.points
            .iter()
            .enumerate()
            .min_by(|(_, &p1), (_, &p2)|
                p1.partial_cmp(&p2).unwrap());
        let (idx, point) = min.unwrap();

        (idx, *point)
    }
}


impl<T> WindingNumber<T> for SimplePolygon<T>
    where T: CoordinateType {
    /// Calculate the winding number of the polygon around this point.
    ///
    /// TODO: Define how point on edges and vertices is handled.
    ///
    /// See: <http://geomalgorithms.com/a03-_inclusion.html>
    fn winding_number(&self, point: Point<T>) -> isize {
        let edges = self.edges();
        let mut winding_number = 0isize;

        // Edge Crossing Rules
        //
        // 1. an upward edge includes its starting endpoint, and excludes its final endpoint;
        // 2. a downward edge excludes its starting endpoint, and includes its final endpoint;
        // 3. horizontal edges are excluded
        // 4. the edge-ray intersection point must be strictly right of the point P.

        for e in edges {
            if e.start.y <= point.y { // Crosses upward?
                if e.end.y > point.y { // Crosses really upward?
                    // Yes, crosses upward.
                    if e.side_of(point) == Side::Left {
                        winding_number += 1;
                    }
                }
            } else if e.end.y <= point.y { // Crosses downward?
                // Yes, crosses downward.
                // `e.start.y > point.y` needs not to be checked anymore.
                if e.side_of(point) == Side::Right {
                    winding_number -= 1;
                }
            }
        }

        winding_number
    }
}

/// Create a polygon from a type that is convertible into an iterator of values convertible to `Point`s.
impl<I, T, P> From<I> for SimplePolygon<T>
    where T: Copy,
          I: IntoIterator<Item=P>,
          Point<T>: From<P>
{
    fn from(iter: I) -> Self {
        let points: Vec<Point<T>> = iter.into_iter().map(
            |x| x.into()
        ).collect();

        SimplePolygon { points }
    }
}

// impl<T: CoordinateType> From<&Rect<T>> for SimplePolygon<T> {
//     fn from(rect: &Rect<T>) -> Self {
//         Self::new(
//             vec![rect.lower_left(), rect.lower_right(),
//                  rect.upper_right(), rect.upper_left()]
//         )
//     }
// }

//
// /// Create a polygon from a `Vec` of values convertible to `Point`s.
// impl<'a, T, P> From<&'a Vec<P>> for SimplePolygon<T>
//     where T: CoordinateType,
//           Point<T>: From<&'a P>
// {
//     fn from(vec: &'a Vec<P>) -> Self {
//         let points: Vec<Point<T>> = vec.into_iter().map(
//             |x| x.into()
//         ).collect();
//
//         SimplePolygon { points }
//     }
// }
//
// /// Create a polygon from a `Vec` of values convertible to `Point`s.
// impl<T, P> From<Vec<P>> for SimplePolygon<T>
//     where T: CoordinateType,
//           Point<T>: From<P>
// {
//     fn from(vec: Vec<P>) -> Self {
//         let points: Vec<Point<T>> = vec.into_iter().map(
//             |x| x.into()
//         ).collect();
//
//         SimplePolygon { points }
//     }
// }

/// Create a polygon from a iterator of values convertible to `Point`s.
impl<T, P> FromIterator<P> for SimplePolygon<T>
    where T: Copy,
          P: Into<Point<T>>
{
    fn from_iter<I>(iter: I) -> Self
        where I: IntoIterator<Item=P>
    {
        let points: Vec<Point<T>> = iter.into_iter().map(
            |x| x.into()
        ).collect();

        assert!(points.len() >= 2, "A polygon needs to have at least two points.");

        SimplePolygon { points }
    }
}


impl<T> TryBoundingBox<T> for SimplePolygon<T>
    where T: Copy + PartialOrd {
    fn try_bounding_box(&self) -> Option<Rect<T>> {
        if self.len() > 0 {
            let mut x_min = self.points[0].x;
            let mut x_max = x_min;
            let mut y_min = self.points[0].y;
            let mut y_max = y_min;

            for p in self.iter().skip(1) {
                if p.x < x_min {
                    x_min = p.x;
                }
                if p.x > x_max {
                    x_max = p.x;
                }
                if p.y < y_min {
                    y_min = p.y;
                }
                if p.y > y_max {
                    y_max = p.y;
                }
            }

            Some(Rect::new((x_min, y_min), (x_max, y_max)))
        } else {
            None
        }
    }
}

impl<T> MapPointwise<T> for SimplePolygon<T>
    where T: CoordinateType {
    fn transform<F: Fn(Point<T>) -> Point<T>>(&self, tf: F) -> Self {
        let points = self.points.iter().map(|&p| tf(p)).collect();

        let mut new = SimplePolygon {
            points
        };

        // Make sure the polygon is oriented the same way as before.
        // TODO: Could be done more efficiently if the magnification/mirroring of the transformation is known.
        if new.orientation::<T>() != self.orientation::<T>() {
            new.points.reverse()
        }

        new
    }
}

impl<A, T> DoubledOrientedArea<A> for SimplePolygon<T>
    where T: CoordinateType,
          A: Num + From<T> {
    /// Calculates the doubled oriented area.
    ///
    /// Using doubled area allows to compute in the integers because the area
    /// of a polygon with integer coordinates is either integer or half-integer.
    ///
    /// The area will be positive if the vertices are listed counter-clockwise,
    /// negative otherwise.
    ///
    /// Complexity: O(n)
    ///
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::traits::DoubledOrientedArea;
    /// use iron_shapes::simple_polygon::SimplePolygon;
    /// let coords = vec![(0, 0), (3, 0), (3, 1)];
    ///
    /// let poly = SimplePolygon::from(coords);
    ///
    /// let area: i64 = poly.area_doubled_oriented();
    /// assert_eq!(area, 3);
    ///
    /// ```
    fn area_doubled_oriented(&self) -> A {
        let mut sum = A::zero();
        let ps = &self.points;
        for i in 0..ps.len() {
            let dy = ps[self.next(i)].y - ps[self.prev(i)].y;
            let x = ps[i].x;
            sum = sum + A::from(x) * A::from(dy);
        }
        sum
    }
}


impl<T: PartialEq> Eq for SimplePolygon<T> {}


impl<T> PartialEq for SimplePolygon<T>
    where T: PartialEq {
    /// Equality test for simple polygons.
    ///
    /// Two polygons are equal iff a cyclic shift on their vertices can be applied
    /// such that the both lists of vertices match exactly.
    ///
    /// Complexity: O(n^2)
    ///
    /// TODO: Normalized ordering of vertices for faster comparison.
    fn eq(&self, rhs: &Self) -> bool {
        let n = self.len();
        if n == rhs.len() {
            for i in 0..n {
                let l = self.points.iter();
                let r = rhs.points.iter().cycle().skip(i).take(n);

                if l.eq(r) {
                    return true;
                }
            }
            false
        } else {
            false
        }
    }
}

impl<T: CoordinateType + NumCast, Dst: CoordinateType + NumCast> TryCastCoord<T, Dst> for SimplePolygon<T> {
    type Output = SimplePolygon<Dst>;

    fn try_cast(&self) -> Option<Self::Output> {
        let new_points: Option<Vec<_>> = self.points.iter()
            .map(|p| p.try_cast())
            .collect();

        new_points.map(|p| SimplePolygon::new(p))
    }
}

/// Two simple polygons should be the same even if points are shifted cyclical.
#[test]
fn test_partial_eq() {
    let p1 = simple_polygon!((0, 0), (0, 1), (1, 1), (1, 0));
    let p2 = simple_polygon!((0, 0), (0, 1), (1, 1), (1, 0));
    assert_eq!(p1, p2);

    let p2 = simple_polygon!((0, 1), (1, 1), (1, 0), (0, 0));
    assert_eq!(p1, p2);
}

/// Simple sanity check for computation of bounding box.
#[test]
fn test_bounding_box() {
    let p = simple_polygon!((0, 0), (0, 1), (1, 1));
    assert_eq!(p.try_bounding_box(), Some(Rect::new((0, 0), (1, 1))));
}