1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
// Copyright (c) 2018-2020 Thomas Kramer.
// SPDX-FileCopyrightText: 2018-2022 Thomas Kramer
//
// SPDX-License-Identifier: AGPL-3.0-or-later

//! Points represent a location in the two dimensional plane by an `x` and `y` coordinate.

use crate::vector::Vector;
use crate::traits::{MapPointwise, TryCastCoord, BoundingBox, TryBoundingBox};


use std::cmp::{Ord, Ordering};
use std::fmt;

use num_traits::{Float, NumCast};
pub use num_traits::Zero;
use std::ops::{Div, MulAssign, Mul, Neg, Sub, SubAssign, AddAssign, Add, DerefMut};
pub use std::ops::Deref;
use crate::prelude::Rect;

/// Shorthand notation for creating a point.
///
/// # Example
/// ```
/// # #[macro_use]
/// # extern crate iron_shapes;
/// # fn main() {
/// use iron_shapes::prelude::*;
/// let p = point!(1, 2);
/// assert_eq!(p, Point::new(1, 2));
/// # }
/// ```
#[macro_export]
macro_rules! point {
 ($x:expr, $y:expr) => {Point::new($x, $y)}
}

/// A point is defined by a x and y coordinate in the euclidean plane.
#[derive(Copy, Clone, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Point<T> {
    /// Store the location as a translation from the origin.
    location: Vector<T>
}

impl<T: PartialEq> Eq for Point<T> {}

impl<T: PartialEq> PartialEq for Point<T> {
    fn eq(&self, other: &Self) -> bool {
        self.location == other.location
    }
}

impl<T> Deref for Point<T> {
    type Target = Vector<T>;

    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.location
    }
}

impl<T> DerefMut for Point<T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.location
    }
}

impl<T> From<Vector<T>> for Point<T> {
    #[inline]
    fn from(v: Vector<T>) -> Self {
        Point {
            location: v
        }
    }
}

impl<T: Copy> From<&Vector<T>> for Point<T> {
    #[inline]
    fn from(v: &Vector<T>) -> Self {
        Self::from(*v)
    }
}

impl<T> Into<Vector<T>> for Point<T> {
    #[inline]
    fn into(self) -> Vector<T> {
        self.location
    }
}

impl<T> Point<T> {
    /// Create a new point with `x` and `y` coordinates.
    #[inline]
    pub fn new(x: T, y: T) -> Self {
        Point { location: Vector::new(x, y) }
    }
}

impl<T: Copy> Point<T> {
    /// Return the location of this point as a vector.
    #[inline]
    pub fn v(&self) -> Vector<T> {
        self.location
    }
}

impl<T: Zero> Point<T> {
    /// Get zero-Point.
    ///
    /// # Examples
    /// ```
    /// use iron_shapes::point::Point;
    ///
    /// let a = Point::zero();
    /// let b = Point::new(0, 0);
    ///
    /// assert_eq!(a, b);
    /// ```
    #[inline]
    pub fn zero() -> Self { Vector::zero().into() }

    /// Check if this is the zero-Point.
    ///
    /// # Examples
    /// ```
    /// use iron_shapes::point::*;
    ///
    /// assert!(Point::<usize>::zero().is_zero());
    /// ```
    #[inline]
    pub fn is_zero(&self) -> bool {
        self.x.is_zero() && self.y.is_zero()
    }
}

impl<T: Copy + Mul<Output=T> + Add<Output=T> + Sub<Output=T>> Point<T> {
    /// Compute the squared distance to the `other` point.
    ///
    /// # Examples
    /// ```
    /// use iron_shapes::point::*;
    ///
    /// let a = Point::new(0, 0);
    /// let b = Point::new(2, 0);
    /// assert_eq!(a.distance_sq(&b), 2*2);
    /// ```
    #[inline]
    pub fn distance_sq(self, other: &Point<T>) -> T {
        let diff = self - *other;
        diff.norm2_squared()
    }

    /// Calculate the cross product of the two vectors defined by three points.
    ///
    /// A positive value implies that `self` → `a` → `b` is counter-clockwise, negative implies
    /// clockwise.
    ///
    /// (`b` - `self`) x (`c` - `b`)
    ///
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::point::Point;
    ///
    /// let a = Point::new(1,0);
    /// let b = Point::new(1,1);
    /// let c = Point::new(0,1);
    ///
    /// let p = a.cross_prod3(b, c);
    ///
    /// assert_eq!(p, (b-a).cross_prod(c - b));
    /// ```
    #[inline]
    pub fn cross_prod3(&self, b: Point<T>, c: Point<T>) -> T {
        (b.x - self.x) * (c.y - b.y) - (b.y - self.y) * (c.x - b.x)
    }
}

impl<T: Copy + Sub<Output=T> + NumCast> Point<T> {
    /// Compute the Euclidean distance betwen two points.
    #[inline]
    pub fn distance<F: Float>(self, other: &Point<T>) -> F {
        let diff = self - *other;
        diff.length()
    }
}

/// Compare points.
///
/// The ordering is determined by the x-coordinates. If it is the same
/// for both points the y-coordinate is used.
///
/// Point `a` > Point `b` iff `a.x > b.x || (a.x == b.x && a.y > b.y)`.
impl<T: PartialOrd> PartialOrd for Point<T> {
    #[inline]
    fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
        match self.x.partial_cmp(&rhs.x) {
            Some(Ordering::Equal) => self.y.partial_cmp(&rhs.y),
            maybe_ordering => maybe_ordering
        }
    }
}

/// Compare points.
///
/// The ordering is determined by the x-coordinates. If it is the same
/// for both points the y-coordinate is used.
///
/// Point `a` > Point `b` iff `a.x > b.x || (a.x == b.x && a.y > b.y)`.
impl<T: Ord> Ord for Point<T> {
    #[inline]
    fn cmp(&self, rhs: &Self) -> Ordering {
        match self.x.cmp(&rhs.x) {
            Ordering::Equal => self.y.cmp(&rhs.y),
            ordering => ordering
        }
    }
}


/// Point wise transformation for a single point.
impl<T: Copy> MapPointwise<T> for Point<T> {
    /// Point wise transformation.
    #[inline]
    fn transform<F>(&self, transformation: F) -> Self
        where F: Fn(Point<T>) -> Point<T> {
        transformation(*self)
    }
}


impl<T: Copy> Into<(T, T)> for Point<T> {
    #[inline]
    fn into(self) -> (T, T) {
        (self.x, self.y)
    }
}

impl<T: Copy> Into<(T, T)> for &Point<T> {
    #[inline]
    fn into(self) -> (T, T) {
        (self.x, self.y)
    }
}

impl<T: Copy> From<(T, T)> for Point<T> {
    #[inline]
    fn from(coords: (T, T)) -> Self {
        Point::new(coords.0, coords.1)
    }
}

impl<'a, T: Copy> From<&'a (T, T)> for Point<T> {
    #[inline]
    fn from(coords: &'a (T, T)) -> Self {
        Point::new(coords.0, coords.1)
    }
}

impl<'a, T: Copy> From<&'a Point<T>> for Point<T> {
    #[inline]
    fn from(v: &'a Point<T>) -> Self {
        Point::new(v.x, v.y)
    }
}

impl<T: Copy> From<[T; 2]> for Point<T> {
    #[inline]
    fn from(coords: [T; 2]) -> Self {
        Point::new(coords[0], coords[1])
    }
}

impl<T> fmt::Debug for Point<T>
    where T: fmt::Debug {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Point({:?}, {:?})", self.x, self.y)
    }
}

impl<T> fmt::Display for Point<T>
    where T: fmt::Display
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({}, {})", self.x, self.y)
    }
}


impl<T: Copy + NumCast> Point<T> {
    /// Convert Point into a Point with floating point data type.
    #[inline]
    pub fn cast_to_float<F: Float + NumCast>(&self) -> Point<F> {
        // TODO: find conversion that does not panic for sure.
        Point::new(
            F::from(self.x).unwrap(),
            F::from(self.y).unwrap(),
        )
    }
}

impl<T: Copy + NumCast, Dst: Copy + NumCast> TryCastCoord<T, Dst> for Point<T> {
    type Output = Point<Dst>;

    #[inline]
    fn try_cast(&self) -> Option<Self::Output> {
        match (Dst::from(self.x), Dst::from(self.y)) {
            (Some(x), Some(y)) => Some(Point::new(x, y)),
            _ => None
        }
    }
}

/// Point addition.
impl<T, V> Add<V> for Point<T>
    where T: Copy + Add<Output=T>,
          V: Into<Point<T>>
{
    type Output = Self;

    #[inline]
    fn add(self, rhs: V) -> Self {
        let rhs = rhs.into();
        Point::new(
            self.x + rhs.x,
            self.y + rhs.y,
        )
    }
}

impl<T, V> AddAssign<V> for Point<T>
    where T: Copy + AddAssign<T>,
          V: Into<Vector<T>>
{
    #[inline]
    fn add_assign(&mut self, rhs: V) {
        let rhs = rhs.into();
        self.location += rhs;
    }
}

/// Subtract a point.
impl<T> Sub<Point<T>> for Point<T>
    where T: Copy + Sub<Output=T>
{
    type Output = Vector<T>;

    #[inline]
    fn sub(self, rhs: Point<T>) -> Self::Output {
        Vector::new(
            self.x - rhs.x,
            self.y - rhs.y,
        )
    }
}

/// Subtract a vector.
impl<T> Sub<Vector<T>> for Point<T>
    where T: Copy + Sub<Output=T>
{
    type Output = Point<T>;

    #[inline]
    fn sub(self, rhs: Vector<T>) -> Self::Output {
        Point::new(
            self.x - rhs.x,
            self.y - rhs.y,
        )
    }
}

impl<T, V> SubAssign<V> for Point<T>
    where T: Copy + SubAssign<T>,
          V: Into<Vector<T>>
{
    #[inline]
    fn sub_assign(&mut self, rhs: V) {
        let rhs = rhs.into();
        self.location -= rhs;
    }
}

impl<T> Neg for Point<T>
    where T: Copy + Neg<Output=T>
{
    type Output = Self;

    #[inline]
    fn neg(self) -> Self {
        Point::new(
            -self.x,
            -self.y,
        )
    }
}

/// Scalar multiplication.
impl<T> Mul<T> for Point<T>
    where T: Copy + Mul<Output=T>
{
    type Output = Self;

    #[inline]
    fn mul(self, rhs: T) -> Self {
        Point::new(
            self.x * rhs,
            self.y * rhs,
        )
    }
}

/// In-place scalar multiplication.
impl<T> MulAssign<T> for Point<T>
    where T: Copy + MulAssign<T>
{
    #[inline]
    fn mul_assign(&mut self, rhs: T) {
        self.location *= rhs;
    }
}

/// Scalar division.
impl<T> Div<T> for Point<T>
    where T: Copy + Div<Output=T>
{
    type Output = Self;

    #[inline]
    fn div(self, rhs: T) -> Self {
        Point::new(
            self.x / rhs,
            self.y / rhs,
        )
    }
}

impl<T: Copy + Zero + Add<Output=T>> std::iter::Sum for Point<T> {
    /// Compute the sum of all points in the iterator.
    /// If the iterator is empty, (0, 0) is returned.
    fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
        iter.fold(Self::zero(), |acc, p| acc + p)
    }
}

impl<T: Copy> BoundingBox<T> for Point<T> {
    fn bounding_box(&self) -> Rect<T> {
        Rect {
            lower_left: *self,
            upper_right: *self
        }
    }
}

impl<T: Copy> TryBoundingBox<T> for Point<T> {
    fn try_bounding_box(&self) -> Option<Rect<T>> {
        Some(self.bounding_box())
    }
}