1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
// Copyright (c) 2018-2020 Thomas Kramer.
// SPDX-FileCopyrightText: 2018-2022 Thomas Kramer
//
// SPDX-License-Identifier: AGPL-3.0-or-later
//! Edge intersection functions for integer coordinates.
pub use crate::edge::{Edge, EdgeIntersection, LineIntersection};
use crate::point::Point;
use crate::redge::{REdge, REdgeIntersection};
use std::cmp::Ordering;
use crate::CoordinateType;
use crate::traits::BoundingBox;
use num_traits::{PrimInt, Zero};
use std::convert::TryFrom;
use std::fmt::Debug;
impl<T: CoordinateType + PrimInt + Debug> Edge<T> {
/// Compute the intersection point of the lines defined by the two edges.
/// Coordinates of intersection points are rounded towards zero.
///
/// Degenerate lines don't intersect by definition.
///
/// Returns `LineIntersection::None` iff the two lines don't intersect.
/// Returns `LineIntersection::Collinear` iff both lines are equal.
/// Returns `LineIntersection::Point(p,(a,b,c))` iff the lines intersect in exactly one point `p`.
/// `f` is a value such that `self.start + self.vector()*a/c == p` and
/// `other.start + other.vector()*b/c == p`.
///
/// # Examples
///
/// ```
/// use iron_shapes::point::Point;
/// use iron_shapes::edge::*;
///
/// let e1 = Edge::new((0, 0), (2, 2));
/// let e2 = Edge::new((0, 2), (2, 0));
///
/// assert_eq!(e1.line_intersection_rounded(e2),
/// LineIntersection::Point(Point::new(1, 1), (4, 4, 8)));
///
/// ```
pub fn line_intersection_rounded(&self, other: Edge<T>) -> LineIntersection<T, T> {
if self.is_degenerate() || other.is_degenerate() {
LineIntersection::None
} else {
// TODO: faster implementation if both lines are orthogonal
let ab = self.vector();
let cd = other.vector();
// Assert that the vectors have a non-zero length. This should already be the case
// because the degenerate cases are handled before.
debug_assert!(!ab.is_zero());
debug_assert!(!cd.is_zero());
// if ab.x.is_zero() {
// // Self is vertical.
// if cd.y.is_zero() {
// // Lines are orthogonal.
// // Get intersection point.
// let p = Point::new(self.start.x, other.start.y);
// unimplemented!()
// // TODO:
// } else if cd.x.is_zero() {
// // Lines are parallel.
// return if self.x == other.x {
// // Lines are collinear.
// LineIntersection::Collinear
// } else {
// LineIntersection::None
// }
// }
// } else if ab.y.is_zero() {
// if cd.x.is_zero() {
// // Lines are orthogonal.
// // Get intersection point.
// let p = Point::new(other.start.x, start.start.y);
// unimplemented!()
// // TODO:
// } else if cd.y.is_zero() {
// // Lines are parallel.
// return if self.y == other.y {
// // Lines are collinear.
// LineIntersection::Collinear
// } else {
// LineIntersection::None
// }
// }
// }
let s = ab.cross_prod(cd);
if s.is_zero() {
// Lines are parallel
debug_assert!(self.is_parallel(&other));
// TODO: check more efficiently for collinear lines.
if self.line_contains_point(other.start) {
// If the line defined by `self` contains at least one point of `other` then they are equal.
debug_assert!(self.is_collinear(&other));
LineIntersection::Collinear
} else {
LineIntersection::None
}
} else {
let ac = other.start - self.start;
let ac_cross_cd = ac.cross_prod(cd);
// let two = T::one() + T::one();
// let one_vector = Vector::new(T::one(), T::one());
// Compute exact solution but scaled by s.
let exact_scaled_s = self.start * s + ab * ac_cross_cd;
// Divide by s and round by truncating towards zero.
// Where the result of an integer division is negative it is truncated towards zero.
// let p: Point<T> = (exact_scaled_s * two + one_vector * s) / (s * two); // Round to next integer.
let p: Point<T> = exact_scaled_s / s;
// TODO: maybe remove computation of relative positions?
let ca_cross_ab = ac.cross_prod(ab);
debug_assert!({
let exact_scaled_s = other.start * s + cd * ca_cross_ab;
// let p2: Point<T> = (exact_scaled_s * two + one_vector * s) / (s * two);// Round to next integer.
let p2: Point<T> = exact_scaled_s / s;
p == p2
});
let positions = if s < T::zero() {
(
T::zero() - ac_cross_cd,
T::zero() - ca_cross_ab,
T::zero() - s,
)
} else {
(ac_cross_cd, ca_cross_ab, s)
};
LineIntersection::Point(p, positions)
}
}
}
/// Compute the intersection with another edge.
/// Coordinates of intersection points are rounded towards zero.
///
/// `EdgeIntersection::EndPoint` is returned if and only if the intersection lies exactly on an end point.
pub fn edge_intersection_rounded(&self, other: &Edge<T>) -> EdgeIntersection<T, T, Edge<T>> {
// Swap direction of other edge such that both have the same direction.
let other = if (self.start < self.end) != (other.start < other.end) {
other.reversed()
} else {
*other
};
debug_assert_eq!(
self.start < self.end,
other.start < other.end,
"Edges should have the same orientation now."
);
// Try to convert the edges into rectilinear edges.
if let Ok(a) = REdge::try_from(self) {
if let Ok(b) = REdge::try_from(&other) {
return match a.edge_intersection(&b) {
REdgeIntersection::None => EdgeIntersection::None,
REdgeIntersection::EndPoint(p) => {
debug_assert!(
p == a.start() || p == a.end() || p == b.start() || p == b.end()
);
EdgeIntersection::EndPoint(p)
}
REdgeIntersection::Point(p) => EdgeIntersection::Point(p),
REdgeIntersection::Overlap(e) => EdgeIntersection::Overlap(e.into()),
};
}
}
// Check endpoints for coincidence.
// This must be handled separately because equality of the intersection point and endpoints
// will not necessarily be detected due to rounding errors.
let same_start_start = self.start == other.start;
let same_start_end = self.start == other.end;
let same_end_start = self.end == other.start;
let same_end_end = self.end == other.end;
// Are the edges equal but not degenerate?
let fully_coincident =
(same_start_start & same_end_end) ^ (same_start_end & same_end_start);
let result = if self.is_degenerate() {
// First degenerate case
if other.contains_point(self.start).inclusive_bounds() {
EdgeIntersection::EndPoint(self.start)
} else {
EdgeIntersection::None
}
} else if other.is_degenerate() {
// Second degenerate case
if self.contains_point(other.start).inclusive_bounds() {
EdgeIntersection::EndPoint(other.start)
} else {
EdgeIntersection::None
}
} else if fully_coincident {
EdgeIntersection::Overlap(*self)
} else if !self.bounding_box().touches(&other.bounding_box()) {
// If bounding boxes do not touch, then intersection is impossible.
EdgeIntersection::None
} else {
// Compute the intersection of the lines defined by the two edges.
let line_intersection = self.line_intersection_rounded(other);
// Then check if the intersection point is on both edges
// or find the intersection if the edges overlap.
match line_intersection {
LineIntersection::None => EdgeIntersection::None,
LineIntersection::Point(p, (pos1, pos2, len)) => {
if pos1 >= T::zero() && pos1 <= len && pos2 >= T::zero() && pos2 <= len {
if pos1 == T::zero() || pos1 == len || pos2 == T::zero() || pos2 == len {
EdgeIntersection::EndPoint(p)
} else {
EdgeIntersection::Point(p)
}
} else {
EdgeIntersection::None
}
}
LineIntersection::Collinear => {
debug_assert!(self.is_collinear(&other));
// Project all points of the two edges on the line defined by the first edge
// (scaled by the length of the first edge).
// This allows to calculate the interval of overlap in one dimension.
let (pa, pb) = self.into();
let (pc, pd) = other.into();
let b = pb - pa;
let c = pc - pa;
let d = pd - pa;
let dist_a = T::zero();
let dist_b = b.dot(b);
let dist_c = b.dot(c);
let dist_d = b.dot(d);
let start1 = (dist_a, pa);
let end1 = (dist_b, pb);
// Sort end points of other edge.
let (start2, end2) = if dist_c < dist_d {
((dist_c, pc), (dist_d, pd))
} else {
((dist_d, pd), (dist_c, pc))
};
// Find maximum by distance.
let start = if start1.0 < start2.0 { start2 } else { start1 };
// Find minimum by distance.
let end = if end1.0 < end2.0 { end1 } else { end2 };
// Check if the edges overlap in more than one point, in exactly one point or
// in zero points.
match start.0.cmp(&end.0) {
Ordering::Less => EdgeIntersection::Overlap(Edge::new(start.1, end.1)),
Ordering::Equal => EdgeIntersection::EndPoint(start.1),
Ordering::Greater => EdgeIntersection::None,
}
}
}
};
// Check that the result is consistent with the edge intersection test.
debug_assert_eq!(
result == EdgeIntersection::None,
self.edges_intersect(&other).is_no()
);
result
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_line_intersection_rounded() {
let e1 = Edge::new((0, 0), (2, 2));
let e2 = Edge::new((0, 2), (2, 0));
let intersection = e1.line_intersection_rounded(e2);
assert_eq!(
intersection,
LineIntersection::Point((1, 1).into(), (4, 4, 8))
);
let e1 = Edge::new((0, 1), (1, 1));
let e2 = Edge::new((0, 0), (1, 2));
let intersection = e1.line_intersection_rounded(e2);
match intersection {
LineIntersection::Point(p, _) => assert_eq!(p, Point::new(0, 1)),
_ => assert!(false),
}
let e1 = Edge::new((0, 1), (1, 1));
let e2 = Edge::new((0, 0), (1, 3));
let intersection = e1.line_intersection_rounded(e2);
match intersection {
LineIntersection::Point(p, _) => assert_eq!(p, Point::new(0, 1)),
_ => assert!(false),
}
// Test truncation towards zero.
let e1 = Edge::new((0i32, 0), (1, 0));
let e2 = Edge::new((0, 1), (12345677, -1));
let intersection = e1.line_intersection_rounded(e2);
match intersection {
LineIntersection::Point(p, _) => assert_eq!(p, Point::new(12345677 / 2, 0)),
_ => assert!(false),
}
// Test truncation towards zero.
let e1 = Edge::new((0i32, 0), (-1, 0));
let e2 = Edge::new((0, -1), (-12345677, 1));
let intersection = e1.line_intersection_rounded(e2);
match intersection {
LineIntersection::Point(p, _) => assert_eq!(p, Point::new(-12345677 / 2, 0)),
_ => assert!(false),
}
}
#[test]
fn test_edge_intersection_rounded() {
// Intersection inside the edges.
let e1 = Edge::new((-10, 0), (10, 0));
let e2 = Edge::new((-1, -1), (2, 2));
assert_eq!(
e1.edge_intersection_rounded(&e2),
EdgeIntersection::Point((0, 0).into())
);
assert_eq!(
e2.edge_intersection_rounded(&e1),
EdgeIntersection::Point((0, 0).into())
);
// Intersection on an endpoint.
let e1 = Edge::new((-10, 0), (10, 0));
let e2 = Edge::new((0, 0), (2, 2));
assert_eq!(
e1.edge_intersection_rounded(&e2),
EdgeIntersection::EndPoint((0, 0).into())
);
assert_eq!(
e2.edge_intersection_rounded(&e1),
EdgeIntersection::EndPoint((0, 0).into())
);
// Intersection on both endpoint.
let e1 = Edge::new((0, 0), (10, 0));
let e2 = Edge::new((0, 0), (2, 2));
assert_eq!(
e1.edge_intersection_rounded(&e2),
EdgeIntersection::EndPoint((0, 0).into())
);
assert_eq!(
e2.edge_intersection_rounded(&e1),
EdgeIntersection::EndPoint((0, 0).into())
);
// Intersection not on an endpoint but rounded down to an endpoint.
// TODO: Rethink what should happen here. EndPoint or Point?
let e1 = Edge::new((0, 0), (1, 0));
let e2 = Edge::new((0, -1), (1, 10));
assert_eq!(
e1.edge_intersection_rounded(&e2),
EdgeIntersection::Point((0, 0).into())
);
assert_eq!(
e2.edge_intersection_rounded(&e1),
EdgeIntersection::Point((0, 0).into())
);
// No intersection.
let e1 = Edge::new((-10, 0), (10, 0));
let e2 = Edge::new((1, 1), (2, 2));
assert_eq!(e1.edge_intersection_rounded(&e2), EdgeIntersection::None);
assert_eq!(e2.edge_intersection_rounded(&e1), EdgeIntersection::None);
}
#[test]
fn test_end_point_intersection_at_negative_x() {
let p = Point::new;
// Negative coordinates.
let e1 = Edge::new(p(-1, 2), p(0, 0));
let e2 = Edge::new(p(-1, 2), p(0, 2));
assert_eq!(
e1.edge_intersection_rounded(&e2),
EdgeIntersection::EndPoint(p(-1, 2))
);
}
}