1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
// Copyright (c) 2018-2020 Thomas Kramer.
// SPDX-FileCopyrightText: 2018-2022 Thomas Kramer
//
// SPDX-License-Identifier: AGPL-3.0-or-later

//! An edge is a line segment from a start-point to a end-point.

use crate::point::Point;
use crate::rect::Rect;
use crate::vector::Vector;

use crate::CoordinateType;

use num_traits::cast::NumCast;
use num_traits::Float;

use crate::traits::MapPointwise;
pub use crate::traits::{BoundingBox, RotateOrtho, TryBoundingBox, TryCastCoord};
pub use crate::types::Angle;

pub use crate::types::{ContainsResult, Side};

/// Get the endpoints of an edge.
pub trait EdgeEndpoints<T> {
    /// Get the start point of the edge.
    fn start(&self) -> Point<T>;
    /// Get the end point of the edge.
    fn end(&self) -> Point<T>;
}

/// Define the intersection between two edges (i.e. line segments).
pub trait EdgeIntersect
where
    Self: Sized,
{
    /// Numeric type used for expressing the end-point coordinates of the edge.
    type Coord;
    /// Numeric type used for expressing an intersection-point of two edges.
    /// Often this might be the same as `Coord`.
    type IntersectionCoord;

    /// Compute intersection of two edges.
    fn edge_intersection(
        &self,
        other: &Self,
    ) -> EdgeIntersection<Self::Coord, Self::IntersectionCoord, Self>;
}

/// Iterate over edges.
/// For an n-gon this would produce n edges.
pub trait IntoEdges<T> {
    /// Type of edge which will be returned.
    type Edge: EdgeEndpoints<T>;
    /// Iterator type.
    type EdgeIter: Iterator<Item = Self::Edge>;

    /// Get an iterator over edges.
    fn into_edges(self) -> Self::EdgeIter;
}

/// Return type for the edge-edge intersection functions.
/// Stores all possible results of an edge to edge intersection.
///
/// # Note on coordinate types:
/// There are two coordinate types (which may be the same concrete type):
/// * `OriginalCoord` is the coordinate type used to define the edge end-points. An intersection at the end-points
/// can be expressed with this coordinate type.
/// * `IntersectionCoord` is the coordinate type used to express intersection points somewhere in the middle of the edge.
/// This may differ from the coordinate type of the end-points. For example if the end-points are stored in integer coordinates
/// the intersection may require rational coordinates. But in special cases such as axis-aligned edges, the intersection point
/// can indeed be expressed in integer coordinates.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum EdgeIntersection<IntersectionCoord, OriginalCoord, Edge> {
    /// No intersection.
    None,
    /// Intersection in a single point but not on an endpoint of an edge.
    Point(Point<IntersectionCoord>),
    /// Intersection in an endpoint of an edge.
    EndPoint(Point<OriginalCoord>),
    /// Full or partial overlap.
    Overlap(Edge),
}

/// Return type for the line-line intersection functions.
/// Stores all possible results of a line to line intersection.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum LineIntersection<TP: CoordinateType, TE: CoordinateType> {
    /// No intersection at all.
    None,
    /// Intersection in a single point.
    /// Besides the intersection point also an other expression for the intersection point is given.
    /// The three values `(a, b, c)` describe the intersection point in terms of a starting point (the starting point
    /// of the edge which defines the line) and the direction of the edge multiplied by a fraction.
    ///
    /// `edge.start + edge.vector()*a/c == p` and
    /// `other_edge.start + other_edge.vector()*b/c == p`.
    Point(Point<TP>, (TE, TE, TE)),
    /// Lines are collinear.
    Collinear,
}

impl<T: CoordinateType> Into<(Point<T>, Point<T>)> for Edge<T> {
    fn into(self) -> (Point<T>, Point<T>) {
        (self.start, self.end)
    }
}

impl<T: CoordinateType> Into<(Point<T>, Point<T>)> for &Edge<T> {
    fn into(self) -> (Point<T>, Point<T>) {
        (self.start, self.end)
    }
}

impl<T: CoordinateType> From<(Point<T>, Point<T>)> for Edge<T> {
    fn from(points: (Point<T>, Point<T>)) -> Self {
        Edge::new(points.0, points.1)
    }
}

impl<T: CoordinateType> From<[Point<T>; 2]> for Edge<T> {
    fn from(points: [Point<T>; 2]) -> Self {
        Edge::new(points[0], points[1])
    }
}

/// An edge (line segment) is represented by its starting point and end point.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Edge<T> {
    /// Start-point of the edge.
    pub start: Point<T>,
    /// End-point of the edge.
    pub end: Point<T>,
}

impl<T: Copy> EdgeEndpoints<T> for Edge<T> {
    fn start(&self) -> Point<T> {
        self.start
    }

    fn end(&self) -> Point<T> {
        self.end
    }
}

impl<T: Copy> Edge<T> {
    /// Create a new `Edge` from two arguments that implement `Into<Point>`.
    pub fn new<C>(start: C, end: C) -> Self
    where
        C: Into<Point<T>>,
    {
        Edge {
            start: start.into(),
            end: end.into(),
        }
    }

    /// Return the same edge but with the two points swapped.
    pub fn reversed(&self) -> Self {
        Edge {
            start: self.end,
            end: self.start,
        }
    }
}

impl<T: PartialEq> Edge<T> {
    /// Check if edge is degenerate.
    /// An edge is degenerate if start point and end point are equal.
    pub fn is_degenerate(&self) -> bool {
        self.start == self.end
    }

    /// Test if this edge is either horizontal or vertical.
    pub fn is_rectilinear(&self) -> bool {
        !self.is_degenerate() && (self.start.x == self.end.x || self.start.y == self.end.y)
    }

    /// Test if this edge is horizontal.
    pub fn is_horizontal(&self) -> bool {
        !self.is_degenerate() && self.start.y == self.end.y
    }

    /// Test if this edge is vertical.
    pub fn is_vertical(&self) -> bool {
        !self.is_degenerate() && self.start.x == self.end.x
    }
}

impl<T: CoordinateType> Edge<T> {
    /// Returns the vector from `self.start` to `self.end`.
    pub fn vector(&self) -> Vector<T> {
        self.end - self.start
    }

    /// Tells on which side of the edge a point is.
    ///
    /// # Panics
    /// Panics if the edge is degenerate.
    ///
    /// Returns `Side::Left` if the point is on the left side,
    /// `Side::Right` if the point is on the right side
    /// or `Side::Center` if the point lies exactly on the line.
    pub fn side_of(&self, point: Point<T>) -> Side {
        assert!(!self.is_degenerate());

        let a = self.vector();
        let b = point - self.start;

        // Handle rectilinear cases.
        if a.x.is_zero() {
            let side = if point.x < self.start.x {
                Side::Left
            } else if point.x > self.start.x {
                Side::Right
            } else {
                Side::Center
            };

            // Maybe flip the side depending on the orientation of the edge.
            let side = if self.start.y < self.end.y {
                side
            } else {
                side.other()
            };

            return side;
        } else if a.y.is_zero() {
            let side = if point.y < self.start.y {
                Side::Right
            } else if point.y > self.start.y {
                Side::Left
            } else {
                Side::Center
            };

            // Maybe flip the side depending on the orientation of the edge.
            let side = if self.start.x < self.end.x {
                side
            } else {
                side.other()
            };

            return side;
        }

        let area = b.cross_prod(a);

        if area.is_zero() {
            Side::Center
        } else if area < T::zero() {
            Side::Left
        } else {
            Side::Right
        }
    }

    //    /// Find minimal distance between two edges.
    //    pub fn distance_to_edge(self, other: Edge<T>) -> f64 {
    //        let d1 = self.distance(other.start);
    //        let d2 = self.distance(other.end);
    //        let d3 = other.distance(self.start);
    //        let d4 = other.distance(self.end);
    //
    //        let min1 = d1.min(d2);
    //        let min2 = d3.min(d4);
    //
    //        // TODO: if intersects
    //
    //        min1.min(min2)
    //    }

    /// Test if point lies on the edge.
    /// Includes start and end points of edge.
    pub fn contains_point(&self, point: Point<T>) -> ContainsResult {
        if self.start == point || self.end == point {
            ContainsResult::OnBounds
        } else if self.is_degenerate() {
            ContainsResult::No
        } else {
            let a = self.start - point;
            let b = self.end - point;
            // Check if the triangle point-start-end has zero area and that a and b have opposite directions.
            // If a and b have opposite directions then point is between start and end.
            if a.cross_prod(b).is_zero() && a.dot(b) <= T::zero() {
                ContainsResult::WithinBounds
            } else {
                ContainsResult::No
            }
        }
    }

    /// Test if point lies on the line defined by the edge.
    pub fn line_contains_point(&self, point: Point<T>) -> bool {
        if self.is_degenerate() {
            self.start == point
        } else {
            let l = self.vector();
            let b = point - self.start;

            l.cross_prod(b).is_zero()
        }
    }

    /// Test if two edges are parallel.
    pub fn is_parallel(&self, other: &Edge<T>) -> bool {
        if self.is_degenerate() || other.is_degenerate() {
            false
        } else {
            let a = self.vector();
            let b = other.vector();

            if a.x.is_zero() {
                // Both vertical?
                b.x.is_zero()
            } else if a.y.is_zero() {
                // Both horizontal?
                b.y.is_zero()
            } else if b.x.is_zero() || b.y.is_zero() {
                false
            } else {
                a.cross_prod(b).is_zero()
            }
        }
    }

    /// Test if two edges are collinear, i.e. are on the same line.
    pub fn is_collinear(&self, other: &Edge<T>) -> bool
    where
        T: CoordinateType,
    {
        if self.is_degenerate() || other.is_degenerate() {
            false
        } else {
            let v = self.vector();
            let a = other.start - self.start;
            let b = other.end - self.start;

            if self.start.x == self.end.x {
                // Self is vertical.
                // The edges are collinear iff `other` has the same x coordinates as `self`.
                other.start.x == self.start.x && other.end.x == self.start.x
            } else if self.start.y == self.end.y {
                // `self` is horizontal
                other.start.y == self.start.y && other.end.y == self.start.y
            } else if other.start.x == other.end.x {
                self.start.x == other.start.x && self.end.x == other.start.x
            } else if other.start.y == other.end.y {
                // `other` is horizontal
                self.start.y == other.start.y && self.end.y == other.start.y
            } else {
                v.cross_prod(a).is_zero() && v.cross_prod(b).is_zero()
            }
        }
    }

    /// Test edges for coincidence.
    /// Two edges are coincident if they are oriented the same way
    /// and share more than one point (implies that they must be parallel).
    pub fn is_coincident(&self, other: &Edge<T>) -> bool {
        // TODO: use is_collinear
        // TODO: approximate version for floating point types

        let self_start_in_other = other.contains_point(self.start).inclusive_bounds();
        let self_end_in_other = other.contains_point(self.end).inclusive_bounds();
        let other_start_in_self = self.contains_point(other.start).inclusive_bounds();
        let other_end_in_self = self.contains_point(other.end).inclusive_bounds();

        let share_more_than_one_point = self.end != other.start
            && self.start != other.end
            && (self_start_in_other || other_start_in_self)
            && (other_end_in_self || self_end_in_other);

        // Sharing more than one point should imply that the edges are parallel.
        debug_assert!(if share_more_than_one_point {
            self.is_parallel(other)
        } else {
            true
        });

        let oriented_the_same_way = self.vector().dot(other.vector()) > T::zero();

        share_more_than_one_point && oriented_the_same_way
    }

    /// Test if two edges are approximately parallel.
    /// To be used for float coordinates.
    /// Inspired by algorithm on page 241 of "Geometric Tools for Computer Graphics".
    pub fn is_parallel_approx(&self, other: &Edge<T>, epsilon_squared: T) -> bool {
        if self.is_degenerate() || other.is_degenerate() {
            false
        } else {
            let d1 = self.vector();
            let d2 = other.vector();

            let len1_sqr = d1.norm2_squared();
            let len2_sqr = d2.norm2_squared();

            let cross = d1.cross_prod(d2);
            let cross_sqr = cross * cross;

            // TODO: require square tolerance form caller?
            cross_sqr <= len1_sqr * len2_sqr * epsilon_squared
        }
    }

    /// Test if two edges are approximately collinear, i.e. are on the same line.
    /// Inspired by algorithm on page 241 of "Geometric Tools for Computer Graphics".
    pub fn is_collinear_approx(&self, other: &Edge<T>, epsilon_squared: T) -> bool {
        if self.is_degenerate() || other.is_degenerate() {
            false
        } else {
            let d1 = self.vector();
            let d2 = other.vector();

            let len1_sqr = d1.norm2_squared();
            let len2_sqr = d2.norm2_squared();

            let cross = d1.cross_prod(d2);
            let cross_sqr = cross * cross;

            let approx_parallel = cross_sqr <= len1_sqr * len2_sqr * epsilon_squared;

            if approx_parallel {
                let e = other.start - self.start;
                let len_e_sqrt = e.norm2_squared();
                let cross = e.cross_prod(d1);
                let cross_sqr = cross * cross;
                cross_sqr <= len1_sqr * len_e_sqrt * epsilon_squared
            } else {
                false
            }
        }
    }

    /// Test if lines defined by the edges intersect.
    /// If the lines are collinear they are also considered intersecting.
    pub fn lines_intersect_approx(&self, other: &Edge<T>, epsilon_squared: T) -> bool {
        !self.is_parallel_approx(other, epsilon_squared)
            || self.is_collinear_approx(other, epsilon_squared)
    }

    /// Test if this edge is crossed by the line defined by the other edge.
    ///
    /// Returns `WithinBounds` if start and end point of this edge lie on different sides
    /// of the line defined by the `other` edge or `OnBounds` if at least one of the points
    /// lies on the line.
    pub fn crossed_by_line(&self, other: &Edge<T>) -> ContainsResult {
        // TODO: Handle degenerate cases.
        let side1 = other.side_of(self.start);

        if side1 == Side::Center {
            ContainsResult::OnBounds
        } else {
            let side2 = other.side_of(self.end);

            if side2 == Side::Center {
                ContainsResult::OnBounds
            } else if side1 == side2 {
                ContainsResult::No
            } else {
                ContainsResult::WithinBounds
            }
        }
    }

    /// Test if lines defined by the edges intersect.
    /// If the lines are collinear they are also considered intersecting.
    pub fn lines_intersect(&self, other: &Edge<T>) -> bool {
        !self.is_parallel(other) || self.is_collinear(other)
    }

    /// Test if two edges intersect.
    /// If the edges coincide, they also intersect.
    pub fn edges_intersect(&self, other: &Edge<T>) -> ContainsResult {
        // Two edges intersect if the start and end point of one edge
        // lie on opposite sides of the other edge.

        if self.is_degenerate() {
            other.contains_point(self.start)
        } else if other.is_degenerate() {
            self.contains_point(other.start)
        } else if !self.bounding_box().touches(&other.bounding_box()) {
            ContainsResult::No
        } else {
            // TODO:
            //        else if self.is_ortho() && other.is_ortho() {
            //            // We know now that the bounding boxes touch each other.
            //            // For rectilinear edges this implies that they touch somewhere or overlap.
            //            true
            //        } else {
            match self.crossed_by_line(other) {
                ContainsResult::No => ContainsResult::No,
                r => r.min(other.crossed_by_line(self)),
            }
        }
    }
}

impl<T: CoordinateType + NumCast> Edge<T> {
    /// Test if point lies on the line defined by the edge.
    pub fn line_contains_point_approx<F: Float + NumCast>(
        &self,
        point: Point<T>,
        tolerance: F,
    ) -> bool {
        if self.is_degenerate() {
            self.start == point
        } else {
            self.distance_to_line_abs_approx::<F>(point) <= tolerance
        }
    }

    /// Compute the intersection point of the lines defined by the two edges.
    ///
    /// Degenerate lines don't intersect by definition.
    ///
    /// Returns `LineIntersection::None` iff the two lines don't intersect.
    /// Returns `LineIntersection::Collinear` iff both lines are equal.
    /// Returns `LineIntersection::Point(p,(a,b,c))` iff the lines intersect in exactly one point `p`.
    /// `f` is a value such that `self.start + self.vector()*a/c == p` and
    /// `other.start + other.vector()*b/c == p`.
    ///
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::point::Point;
    /// use iron_shapes::edge::*;
    ///
    /// let e1 = Edge::new((0, 0), (2, 2));
    /// let e2 = Edge::new((0, 2), (2, 0));
    ///
    /// assert_eq!(e1.line_intersection_approx(&e2, 1e-6),
    ///     LineIntersection::Point(Point::new(1., 1.), (4, 4, 8)));
    ///
    /// assert_eq!(Point::zero() + e1.vector().cast() * 0.5, Point::new(1., 1.));
    /// ```
    ///
    pub fn line_intersection_approx<F: Float>(
        &self,
        other: &Edge<T>,
        tolerance: F,
    ) -> LineIntersection<F, T> {
        // TODO: implement algorithm on page 241 of Geometric Tools for Computer Graphics.

        debug_assert!(tolerance >= F::zero(), "Tolerance cannot be negative.");

        if self.is_degenerate() || other.is_degenerate() {
            LineIntersection::None
        } else {
            // TODO: faster implementation if both lines are orthogonal

            let ab = self.vector();
            let cd = other.vector();

            // Assert that the vectors have a non-zero length. This should already be the case
            // because the degenerate cases are handled before.
            debug_assert!(ab.norm2_squared() > T::zero());
            debug_assert!(cd.norm2_squared() > T::zero());

            let s = ab.cross_prod(cd);
            let s_float = F::from(s).unwrap();

            // TODO: What if approximate zero due to rounding error?
            if s_float.abs() <= tolerance * ab.length() * cd.length() {
                // Lines are parallel
                // TODO use assertion
                //                debug_assert!(self.is_parallel_approx(other, tolerance));

                // TODO: check more efficiently for collinear lines.
                if self.line_contains_point_approx(other.start, tolerance) {
                    // If the line defined by `self` contains at least one point of `other` then they are equal.
                    // TODO use assertion
                    //                    debug_assert!(self.is_collinear_approx(other, tolerance));
                    LineIntersection::Collinear
                } else {
                    LineIntersection::None
                }
            } else {
                let ac = other.start - self.start;
                let ac_cross_cd = ac.cross_prod(cd);
                let i = F::from(ac_cross_cd).unwrap() / s_float;

                let p: Point<F> = self.start.cast() + ab.cast() * i;

                let ca_cross_ab = ac.cross_prod(ab);

                // Check that the intersection point lies on the lines indeed.
                debug_assert!(self
                    .cast()
                    .line_contains_point_approx(p, tolerance + tolerance));
                debug_assert!(other
                    .cast()
                    .line_contains_point_approx(p, tolerance + tolerance));

                debug_assert!({
                    let j = F::from(ca_cross_ab).unwrap() / s_float;
                    let p2: Point<F> = other.start.cast() + cd.cast() * j;
                    (p - p2).norm2_squared() < tolerance + tolerance
                });

                let positions = if s < T::zero() {
                    (
                        T::zero() - ac_cross_cd,
                        T::zero() - ca_cross_ab,
                        T::zero() - s,
                    )
                } else {
                    (ac_cross_cd, ca_cross_ab, s)
                };

                LineIntersection::Point(p, positions)
            }
        }
    }

    /// Compute the intersection with another edge.
    pub fn edge_intersection_approx<F: Float>(
        &self,
        other: &Edge<T>,
        tolerance: F,
    ) -> EdgeIntersection<F, T, Edge<T>> {
        debug_assert!(tolerance >= F::zero(), "Tolerance cannot be negative.");

        // Swap direction of other edge such that both have the same direction.
        let other = if (self.start < self.end) != (other.start < other.end) {
            other.reversed()
        } else {
            *other
        };

        // Check endpoints for coincidence.
        // This must be handled separately because equality of the intersection point and endpoints
        // will not necessarily be detected due to rounding errors.
        let same_start_start = self.start == other.start;
        let same_start_end = self.start == other.end;

        let same_end_start = self.end == other.start;
        let same_end_end = self.end == other.end;

        // Are the edges equal but not degenerate?
        let fully_coincident =
            (same_start_start & same_end_end) ^ (same_start_end & same_end_start);

        let result = if self.is_degenerate() {
            // First degenerate case
            if other.contains_point_approx(self.start, tolerance) {
                EdgeIntersection::EndPoint(self.start)
            } else {
                EdgeIntersection::None
            }
        } else if other.is_degenerate() {
            // Second degenerate case
            if self.contains_point_approx(other.start, tolerance) {
                EdgeIntersection::EndPoint(other.start)
            } else {
                EdgeIntersection::None
            }
        } else if fully_coincident {
            EdgeIntersection::Overlap(*self)
        } else if !self.bounding_box().touches(&other.bounding_box()) {
            // TODO: Add tolerance here.
            // If bounding boxes do not touch, then intersection is impossible.
            EdgeIntersection::None
        } else {
            // Compute the intersection of the lines defined by the two edges.
            let line_intersection = self.line_intersection_approx(&other, tolerance);

            // Then check if the intersection point is on both edges
            // or find the intersection if the edges overlap.

            match line_intersection {
                LineIntersection::None => EdgeIntersection::None,

                // Coincident at an endpoint:
                LineIntersection::Point(_, _) if same_start_start || same_start_end => {
                    EdgeIntersection::EndPoint(self.start)
                }

                // Coincident at an endpoint:
                LineIntersection::Point(_, _) if same_end_start || same_end_end => {
                    EdgeIntersection::EndPoint(self.end)
                }

                // Intersection in one point:
                LineIntersection::Point(p, (pos1, pos2, len)) => {
                    let len_f = F::from(len).unwrap();
                    let zero_tol = -tolerance;
                    let len_tol = len_f + tolerance;

                    let pos1 = F::from(pos1).unwrap();
                    let pos2 = F::from(pos2).unwrap();

                    // Check if the intersection point `p` lies on the edge.
                    if pos1 >= zero_tol && pos1 <= len_tol && pos2 >= zero_tol && pos2 <= len_tol {
                        // Intersection

                        // TODO: rework

                        let zero_tol = tolerance;
                        let len_tol = len_f - tolerance;

                        if pos1 <= zero_tol {
                            EdgeIntersection::EndPoint(self.start)
                        } else if pos1 >= len_tol {
                            EdgeIntersection::EndPoint(self.end)
                        } else if pos2 <= zero_tol {
                            EdgeIntersection::EndPoint(other.start)
                        } else if pos2 >= len_tol {
                            EdgeIntersection::EndPoint(other.end)
                        } else {
                            // Intersection in-between the endpoints.
                            debug_assert!(
                                {
                                    let e1 = self.cast();
                                    let e2 = other.cast();
                                    p != e1.start && p != e1.end && p != e2.start && p != e2.end
                                },
                                "Intersection should not be an endpoint."
                            );
                            EdgeIntersection::Point(p)
                        }
                    } else {
                        // No intersection.
                        EdgeIntersection::None
                    }
                }
                LineIntersection::Collinear => {
                    // TODO use assertion
                    //                    debug_assert!(self.is_collinear_approx(other, tolerance));

                    // Project all points of the two edges on the line defined by the first edge
                    // (scaled by the length of the first edge).
                    // This allows to calculate the interval of overlap in one dimension.

                    let (pa, pb) = self.into();
                    let (pc, pd) = other.into();

                    let b = pb - pa;
                    let c = pc - pa;
                    let d = pd - pa;

                    let dist_a = T::zero();
                    let dist_b = b.dot(b);

                    let dist_c = b.dot(c);
                    let dist_d = b.dot(d);

                    let start1 = (dist_a, pa);
                    let end1 = (dist_b, pb);

                    // Sort end points of other edge.
                    let (start2, end2) = if dist_c < dist_d {
                        ((dist_c, pc), (dist_d, pd))
                    } else {
                        ((dist_d, pd), (dist_c, pc))
                    };

                    // Find maximum by distance.
                    let start = if start1.0 < start2.0 { start2 } else { start1 };

                    // Find minimum by distance.
                    let end = if end1.0 < end2.0 { end1 } else { end2 };

                    // Check if the edges overlap in more than one point, in exactly one point or
                    // in zero points.
                    if start.0 < end.0 {
                        EdgeIntersection::Overlap(Edge::new(start.1, end.1))
                    } else if start.0 == end.0 {
                        EdgeIntersection::EndPoint(start.1)
                    } else {
                        EdgeIntersection::None
                    }
                }
            }
        };

        // Check that the result is consistent with the edge intersection test.
        //        debug_assert_eq!(
        //            result != EdgeIntersection::None,
        //            self.edges_intersect(other)
        //        );

        debug_assert!(if self.edges_intersect(&other).inclusive_bounds() {
            result != EdgeIntersection::None
        } else {
            true
        });

        result
    }
}

impl<T: CoordinateType + NumCast> Edge<T> {
    /// Try to cast into other data type.
    /// When the conversion fails `None` is returned.
    pub fn try_cast<Target: NumCast>(&self) -> Option<Edge<Target>>
    where
        Target: CoordinateType,
    {
        match (self.start.try_cast(), self.end.try_cast()) {
            (Some(start), Some(end)) => Some(Edge { start, end }),
            _ => None,
        }
    }

    /// Cast to other data type.
    ///
    /// # Panics
    /// Panics when the conversion fails.
    pub fn cast<Target>(&self) -> Edge<Target>
    where
        Target: CoordinateType + NumCast,
    {
        Edge {
            start: self.start.cast(),
            end: self.end.cast(),
        }
    }

    /// Cast to float.
    ///
    /// # Panics
    /// Panics when the conversion fails.
    pub fn cast_to_float<Target>(&self) -> Edge<Target>
    where
        Target: CoordinateType + NumCast + Float,
    {
        Edge {
            start: self.start.cast_to_float(),
            end: self.end.cast_to_float(),
        }
    }

    /// Calculate the distance from the point to the line given by the edge.
    ///
    /// Distance will be positive if the point lies on the right side of the edge and negative
    /// if the point is on the left side.
    pub fn distance_to_line<F: Float>(&self, point: Point<T>) -> F {
        assert!(!self.is_degenerate());

        let a = self.vector();
        let b = point - self.start;

        let area = b.cross_prod(a);

        F::from(area).unwrap() / a.length() // distance
    }

    /// Calculate distance from point to the edge.
    pub fn distance<F: Float>(&self, point: Point<T>) -> F {
        let dist_ortho: F = self.distance_to_line_abs_approx(point);
        let dist_a: F = (point - self.start).length();
        let dist_b = (point - self.end).length();

        dist_ortho.max(dist_a.min(dist_b))
    }

    /// Find the perpendicular projection of a point onto the line of the edge.
    pub fn projection_approx<F: Float>(&self, point: Point<T>) -> Point<F> {
        assert!(!self.is_degenerate());

        let p = (point - self.start).cast();

        let d = (self.vector()).cast();

        // Orthogonal projection of point onto the line.

        self.start.cast() + d * d.dot(p) / d.norm2_squared()
    }

    /// Find the mirror image of `point`.
    pub fn reflection_approx<F: Float>(&self, point: Point<T>) -> Point<F> {
        let proj = self.projection_approx(point);
        proj + proj - point.cast().v()
    }

    /// Calculate the absolute distance from the point onto the unbounded line coincident with this edge.
    pub fn distance_to_line_abs_approx<F: Float>(&self, point: Point<T>) -> F {
        let dist: F = self.distance_to_line(point);
        dist.abs()
    }

    /// Test if point lies approximately on the edge.
    /// Returns true if `point` is up to `tolerance` away from the edge
    /// and lies between start and end points (inclusive).
    pub fn contains_point_approx<F: Float>(&self, point: Point<T>, tolerance: F) -> bool {
        debug_assert!(tolerance >= F::zero());
        if self.is_degenerate() {
            let l = (self.start - point).norm2_squared();
            F::from(l).unwrap() <= tolerance
        } else {
            let p = point - self.start;

            let v = self.vector();
            // Rotate by -pi/4 to get the normal.
            let n: Vector<F> = v.rotate_ortho(Angle::R270).cast() / v.length();
            // Project on to normal
            let o = n.dot(p.cast());

            if o.abs() >= tolerance {
                // Point is not close enough to line.
                false
            } else {
                // Is point between start and end?

                // Project on to line
                let l = F::from(v.dot(p)).unwrap();

                l >= -tolerance && l <= F::from(v.norm2_squared()).unwrap() + tolerance
            }
        }
    }
}

impl<T: Copy> MapPointwise<T> for Edge<T> {
    fn transform<F: Fn(Point<T>) -> Point<T>>(&self, tf: F) -> Self {
        Edge {
            start: tf(self.start),
            end: tf(self.end),
        }
    }
}

impl<T: Copy + PartialOrd> BoundingBox<T> for Edge<T> {
    fn bounding_box(&self) -> Rect<T> {
        Rect::new(self.start, self.end)
    }
}

impl<T: Copy + PartialOrd> TryBoundingBox<T> for Edge<T> {
    /// Get bounding box of edge (always exists).
    fn try_bounding_box(&self) -> Option<Rect<T>> {
        Some(self.bounding_box())
    }
}

impl<T: Copy + NumCast, Dst: Copy + NumCast> TryCastCoord<T, Dst> for Edge<T> {
    type Output = Edge<Dst>;

    fn try_cast(&self) -> Option<Self::Output> {
        match (self.start.try_cast(), self.end.try_cast()) {
            (Some(s), Some(e)) => Some(Edge::new(s, e)),
            _ => None,
        }
    }
}

#[cfg(test)]
mod tests {
    extern crate rand;

    use super::*;
    use crate::edge::Edge;
    use crate::point::Point;
    use crate::types::*;
    use std::f64;

    use self::rand::distributions::{Bernoulli, Distribution, Uniform};
    use self::rand::rngs::StdRng;
    use self::rand::SeedableRng;

    #[test]
    fn test_is_parallel() {
        let e1 = Edge::new((1, 2), (3, 4));
        let e2 = Edge::new((1 - 10, 2 - 20), (5 - 10, 6 - 20));
        let e3 = Edge::new((1 - 10, 2 - 20), (5 - 10, 6 - 20 + 1));

        assert!(e1.is_parallel(&e2));
        assert!(!e1.is_parallel(&e3));

        assert!(e1.is_parallel_approx(&e2, 0));
        assert!(!e1.is_parallel_approx(&e3, 0));

        assert!(e1.is_parallel_approx(&e3, 1));
    }

    #[test]
    fn test_is_collinear() {
        let e1 = Edge::new((0, 0), (1, 2));
        let e2 = Edge::new((10, 20), (100, 200));
        assert!(e1.is_collinear(&e2));
        assert!(e2.is_collinear(&e1));
        assert!(e1.is_collinear_approx(&e2, 0));
        assert!(e2.is_collinear_approx(&e1, 0));

        // Not collinear.
        let e1 = Edge::new((0i64, 0), (1, 2));
        let e2 = Edge::new((10, 20), (1000, 2001));
        assert!(!e1.is_collinear(&e2));
        assert!(!e2.is_collinear(&e1));
        assert!(!e1.is_collinear_approx(&e2, 0));
        assert!(!e2.is_collinear_approx(&e1, 0));

        assert!(e1.is_collinear_approx(&e2, 1));
        assert!(e2.is_collinear_approx(&e1, 1));
    }

    #[test]
    fn test_distance_to_line() {
        let e1 = Edge::new((1, 0), (2, 1));
        let p0 = Point::new(2, 0);

        let d: f64 = e1.distance_to_line(p0);
        let diff = (d - f64::sqrt(2.) / 2.).abs();

        assert!(diff < 1e-9);
    }

    #[test]
    fn test_line_contains_point() {
        let e1 = Edge::new((1, 2), (5, 6));
        let p0 = Point::new(1, 2);
        let p1 = Point::new(3, 4);
        let p2 = Point::new(5, 6);
        let p3 = Point::new(6, 7);
        let p4 = Point::new(0, 1);
        let p5 = Point::new(0, 0);

        assert!(e1.line_contains_point(p0));
        assert!(e1.line_contains_point(p1));
        assert!(e1.line_contains_point(p2));
        assert!(e1.line_contains_point(p3));
        assert!(e1.line_contains_point(p4));
        assert!(!e1.line_contains_point(p5));

        let e1 = Edge::new((0, 0), (1, 1));
        assert!(e1.line_contains_point(Point::new(2, 2)));
        assert!(e1.line_contains_point(Point::new(-1, -1)));
    }

    #[test]
    fn test_contains() {
        let e1 = Edge::new((1, 2), (5, 6));
        let p0 = Point::new(1, 2);
        let p1 = Point::new(3, 4);
        let p2 = Point::new(5, 6);
        let p3 = Point::new(0, 0);
        let p4 = Point::new(6, 7);

        assert!(e1.contains_point(p0).inclusive_bounds());
        assert!(e1.contains_point(p1).inclusive_bounds());
        assert!(e1.contains_point(p2).inclusive_bounds());
        assert!(!e1.contains_point(p3).inclusive_bounds());
        assert!(!e1.contains_point(p4).inclusive_bounds());

        let tol = 1e-6;
        assert!(e1.contains_point_approx(p0, tol));
        assert!(e1.contains_point_approx(p1, tol));
        assert!(e1.contains_point_approx(p2, tol));
        assert!(!e1.contains_point_approx(p3, tol));
        assert!(!e1.contains_point_approx(p4, tol));

        let e1 = Edge::new((0, 0), (1, 1));
        let p0 = Point::new(2, 2);
        assert!(!e1.contains_point(p0).inclusive_bounds());
    }

    #[test]
    fn test_projection() {
        let e1 = Edge::new((-6., -5.), (4., 7.));
        let p1 = Point::new(1., 2.);
        let p2 = Point::new(-10., 10.);

        let proj1 = e1.projection_approx(p1);
        let proj2 = e1.projection_approx(p2);

        assert!(e1.contains_point_approx(proj1, PREC_DISTANCE));
        assert!(e1.contains_point_approx(proj2, PREC_DISTANCE));
    }

    #[test]
    fn test_side_of() {
        let e1 = Edge::new((1, 0), (4, 4));
        let p1 = Point::new(-10, 0);
        let p2 = Point::new(10, -10);
        let p3 = Point::new(1, 0);

        assert_eq!(e1.side_of(p1), Side::Left);
        assert_eq!(e1.side_of(p2), Side::Right);
        assert_eq!(e1.side_of(p3), Side::Center);
    }

    #[test]
    fn test_crossed_by() {
        let e1 = Edge::new((1, 0), (4, 4));
        let e2 = Edge::new((1 + 1, 0), (4 + 1, 4));
        let e3 = Edge::new((1, 0), (4, 5));
        let e4 = Edge::new((2, -2), (0, 0));

        // Coincident lines
        assert!(e1.crossed_by_line(&e1).inclusive_bounds());

        // Parallel but not coincident.
        assert!(e1.is_parallel(&e2));
        assert!(!e1.crossed_by_line(&e2).inclusive_bounds());

        // Crossing lines.
        assert!(e1.crossed_by_line(&e3).inclusive_bounds());

        // crossed_by is not commutative
        assert!(!e1.crossed_by_line(&e4).inclusive_bounds());
        assert!(e4.crossed_by_line(&e1).inclusive_bounds());
    }

    #[test]
    fn test_intersect() {
        let e1 = Edge::new((0, 0), (4, 4));
        let e2 = Edge::new((1, 0), (0, 1));
        let e3 = Edge::new((0, -1), (-1, 1));

        assert!(e1.edges_intersect(&e1).inclusive_bounds());
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert!(!e1.crossed_by_line(&e3).inclusive_bounds());
        assert!(e3.crossed_by_line(&e1).inclusive_bounds());
        assert!(!e1.edges_intersect(&e3).inclusive_bounds());

        // Bounding boxes overlap but edges are not touching.
        let e1 = Edge::new((0, 0), (8, 8));
        let e2 = Edge::new((4, 0), (3, 1));
        assert!(!e1.is_rectilinear());
        assert!(!e2.is_rectilinear());
        assert!(e1.bounding_box().touches(&e2.bounding_box()));
        assert!(!e1.edges_intersect(&e2).inclusive_bounds());
        assert!(e1.lines_intersect(&e2));

        // Intersection at an endpoint.
        let e1 = Edge::new((0, 0), (4, 4));
        let e2 = Edge::new((1, 1), (2, 0));
        assert_eq!(e1.edges_intersect(&e2), ContainsResult::OnBounds);
        assert_eq!(e2.edges_intersect(&e1), ContainsResult::OnBounds);
    }

    #[test]
    fn test_line_intersection() {
        let tol = 1e-12;
        let e1 = Edge::new((0, 0), (2, 2));
        let e2 = Edge::new((1, 0), (0, 1));
        let e3 = Edge::new((1, 0), (3, 2));

        assert_eq!(
            e1.line_intersection_approx(&e2, tol),
            LineIntersection::Point(Point::new(0.5, 0.5), (1, 2, 4))
        );
        // Parallel lines should not intersect
        assert_eq!(
            e1.line_intersection_approx(&e3, tol),
            LineIntersection::None
        );

        let e4 = Edge::new((-320., 2394.), (94., -448382.));
        let e5 = Edge::new((71., 133.), (-13733., 1384.));

        if let LineIntersection::Point(intersection, _) = e4.line_intersection_approx(&e5, tol) {
            assert!(e4.distance_to_line::<f64>(intersection).abs() < tol);
            assert!(e5.distance_to_line::<f64>(intersection).abs() < tol);
        } else {
            assert!(false);
        }

        // Collinear lines.
        let e1 = Edge::new((0., 0.), (2., 2.));
        let e2 = Edge::new((4., 4.), (8., 8.));
        assert!(!e1.is_coincident(&e2));
        assert!(e1.is_parallel_approx(&e2, tol));
        assert_eq!(
            e1.line_intersection_approx(&e2, tol),
            LineIntersection::Collinear
        );
    }

    #[test]
    fn test_edge_intersection() {
        let tol = 1e-20;
        // Point intersection inside both edges.
        let e1 = Edge::new((0, 0), (2, 2));
        let e2 = Edge::new((2, 0), (0, 2));
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::Point(Point::new(1f64, 1f64))
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::Point(Point::new(1f64, 1f64))
        );

        // Point intersection on the end of one edge.
        let e1 = Edge::new((0, 0), (2, 2));
        let e2 = Edge::new((2, 0), (1, 1));
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::EndPoint(Point::new(1, 1))
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::EndPoint(Point::new(1, 1))
        );

        // No intersection
        let e1 = Edge::new((0, 0), (4, 4));
        let e2 = Edge::new((3, 0), (2, 1));
        assert!(!e1.edges_intersect(&e2).inclusive_bounds());
        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::None
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::None
        );
    }

    #[test]
    fn test_edge_intersection_overlap() {
        let tol = 1e-12;
        // Overlapping edges. Same orientations.
        let e1 = Edge::new((0, 0), (2, 0));
        let e2 = Edge::new((1, 0), (3, 0));
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert!(e1.is_collinear(&e2));

        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::Overlap(Edge::new((1, 0), (2, 0)))
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::Overlap(Edge::new((1, 0), (2, 0)))
        );

        // Overlapping edges. Opposing orientations.
        let e1 = Edge::new((0, 0), (2, 2));
        let e2 = Edge::new((3, 3), (1, 1));
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert!(e1.is_collinear(&e2));

        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::Overlap(Edge::new((1, 1), (2, 2)))
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::Overlap(Edge::new((2, 2), (1, 1)))
        );

        // Overlapping edges. One is fully contained in the other. Same orientations.
        let e1 = Edge::new((0, 0), (4, 4));
        let e2 = Edge::new((1, 1), (2, 2));
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert!(e1.is_collinear(&e2));

        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::Overlap(e2)
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::Overlap(e2)
        );

        // Overlapping edges. One is fully contained in the other. Opposing orientations.
        let e1 = Edge::new((0, 0), (4, 4));
        let e2 = Edge::new((2, 2), (1, 1));
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert!(e1.is_collinear(&e2));

        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::Overlap(e2.reversed())
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::Overlap(e2)
        );

        // Collinear edge, touch in exactly one point.
        let e1 = Edge::new((0, 0), (1, 1));
        let e2 = Edge::new((1, 1), (2, 2));
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert!(e1.is_collinear(&e2));

        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::EndPoint(Point::new(1, 1))
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::EndPoint(Point::new(1, 1))
        );

        // Edges touch in exactly one point. Floating point.
        let e1 = Edge::new((1.1, 1.2), (0., 0.));
        let e2 = Edge::new((1.1, 1.2), (2., 2.));
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert!(e2.edges_intersect(&e1).inclusive_bounds());

        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::EndPoint(Point::new(1.1, 1.2))
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::EndPoint(Point::new(1.1, 1.2))
        );

        // Intersection on endpoint with floats.
        let e1 = Edge {
            start: Point::new(20.90725737794763, 65.33301386746126),
            end: Point::new(32.799556599584776, 63.13131890182373),
        };
        let e2 = Edge {
            start: Point::new(22.217533978705163, 70.84660296990562),
            end: Point::new(32.799556599584776, 63.13131890182373),
        };
        assert!(e1.edges_intersect(&e2).inclusive_bounds());
        assert!(e2.edges_intersect(&e1).inclusive_bounds());

        assert_eq!(
            e1.edge_intersection_approx(&e2, tol),
            EdgeIntersection::EndPoint(Point::new(32.799556599584776, 63.13131890182373))
        );
        assert_eq!(
            e2.edge_intersection_approx(&e1, tol),
            EdgeIntersection::EndPoint(Point::new(32.799556599584776, 63.13131890182373))
        );
    }

    #[test]
    fn test_coincident() {
        let e1 = Edge::new((0, 0), (2, 2));
        let e2 = Edge::new((1, 1), (3, 3));
        assert!(e1.is_coincident(&e2));
        assert!(e2.is_coincident(&e1));

        let e1 = Edge::new((0, 0), (3, 3));
        let e2 = Edge::new((1, 1), (2, 2));
        assert!(e1.is_coincident(&e2));
        assert!(e2.is_coincident(&e1));

        let e1 = Edge::new((0, 0), (1, 1));
        let e2 = Edge::new((1, 1), (2, 2));
        assert!(!e1.is_coincident(&e2));
        assert!(!e2.is_coincident(&e1));
    }

    #[test]
    fn test_intersection_of_random_edges() {
        let tol = 1e-12;
        let seed1 = [1u8; 32];
        let seed2 = [2u8; 32];

        let between = Uniform::from(-1.0..1.0);
        let mut rng = StdRng::from_seed(seed1);

        let mut rand_edge = || -> Edge<f64> {
            let points: Vec<(f64, f64)> = (0..2)
                .into_iter()
                .map(|_| (between.sample(&mut rng), between.sample(&mut rng)))
                .collect();

            Edge::new(points[0], points[1])
        };

        let bernoulli_rare = Bernoulli::new(0.05).unwrap();
        let bernoulli_50 = Bernoulli::new(0.5).unwrap();
        let mut rng = StdRng::from_seed(seed2);

        for _i in 0..1000 {
            // Create a random pair of edges. 5% of the edge pairs share an endpoint.
            let (a, b) = {
                let a = rand_edge();

                let b = {
                    let b = rand_edge();

                    if bernoulli_rare.sample(&mut rng) {
                        // Share a point with the other edge.
                        let shared = if bernoulli_50.sample(&mut rng) {
                            a.start
                        } else {
                            a.end
                        };

                        let result = Edge::new(b.start, shared);
                        if bernoulli_50.sample(&mut rng) {
                            result
                        } else {
                            result.reversed()
                        }
                    } else {
                        b
                    }
                };
                (a, b)
            };

            let intersection_ab = a.edge_intersection_approx(&b, tol);
            assert_eq!(
                intersection_ab != EdgeIntersection::None,
                a.edges_intersect(&b).inclusive_bounds()
            );

            let intersection_ba = b.edge_intersection_approx(&a, tol);
            assert_eq!(
                intersection_ba != EdgeIntersection::None,
                b.edges_intersect(&a).inclusive_bounds()
            );
        }
    }
}